

Один для ЛАГ и ХТЭЛГ

DOI: https://doi.org/10.51922/2616-633X.2021.5.2.1109

НЕЗАВИСИМЫЕ ПРЕДИКТОРЫ И ПРОГНОЗИРОВАНИЕ ИНФАРКТА МИОКАРДА В ОТДАЛЕННОМ ПЕРИОДЕ У ПАЦИЕНТОВ С НЕСТАБИЛЬНОЙ СТЕНОКАРДИЕЙ ПОСЛЕ СТЕНТИРОВАНИЯ КОРОНАРНЫХ АРТЕРИЙ

Медведева Елена Александровна, Гелис Людмила Григорьевна, Полонецкий Олег Леонидович, Русских Ирина Ивановна ГУ Республиканский научно-практический центр «Кардиология», Минск, Беларусь

Ключевые слова: нестабильная стенокардия, стентирование коронарных артерий, гемостаз, инфаркт миокарда.

ДЛЯ ЦИТИРОВАНИЯ. Медведева Елена Александровна, Гелис Людмила Григорьевна, Полонецкий Олег Леонидович, Русских Ирина Ивановна. Независимые предикторы и прогнозирование инфаркта миокарда в отдаленном периоде у пациентов с нестабильной стенокардией после стентирования коронарных артерий. Неотложная кардиология и кардиоваскулярные риски. 2021. Т. 5. № 1. С. 1109–1120.

Цель: разработать независимые предикторы для прогнозирования инфаркта миокарда в отдаленном периоде у пациентов с нестабильной стенокардией после стентирования коронарных артерий по результатам

Материалы и методы. За период 2014 г. — 2015 г. в исследование включено 165 пациентов с нестабильной стенокардией и стентированием коронарных артерий. Стентирование выполнялось на 3,2±1,6 сутки от поступления в стационар, использовались стенты с лекарственным покрытием, среднее количество стентов — 2,1±0,78 на человека. Всем пациентам выполнялось определение уровня тропонина І, миелопероксидазы, С-реактивного белка; проводилась оценка коагуляционного гемостаза, выполнение теста генерации тромбина, агрегатограмма. Пациентам выполнялась эхокардиография, коронароангиография. Двойная антитромботическая терапия назначалась на 12 месяцев. Срок наблюдения составил 7,0±1,6 года.

Результаты. При эндоваскулярной стратегии лечения за 7 лет наблюдения повторная нестабильная стенокардия развилась у 91 (55,2%) пациента, инфаркт миокарда (ИМ) зарегистрирован у 21 (12,7%) человека. Сердечно-сосудистая смертность составила 7,3%.

Независимыми предикторами риска развития ИМ явились: исходный уровень Д-димеров ≥ 796 нг/мл AUC 0,766 (ОР 5,272; 95% ДИ 2,125-13,082), эндогенный потенциал тромбина \geq 2294,5 нМ*мин AUC 0,912 (OP 4,769; 95% ДИ 2.457-10.546). N-терминальный фрагмент мозгового натрийуретического пептида ≥ 816 пг/мл АUC 0,794 (ОР 1,935; 95% ДИ 1,218-3,075), уровень гомоцистеина \geq 16 мкмоль/л AUC 0,707 (OP 1,971; 95% ДИ 1,140-3,406), высокочувствительный С-реактивный белок \geq 6,4 г/л AUC 0,790 (ОР 1,333; 95% ДИ 1,081-1,644), количество пораженных коронарных артерий ≥ 3 AUC 0,714 (ОР 2,129; 95% ДИ 1,237-2,664). В разработанную модель прогнозирования инфаркта миокарда включены исходный уровень эндогенного потенциала тромбина ≥ 2294,5 нМ*мин, Д-димеров ≥ 796 нг/мл, и количество поражённых коронарных артерий ≥ 3. Для разработанной модели AUC составила 0,964, что соответствует отличному качеству модели.

Заключение: В прогнозировании инфаркта миокарда у пациентов с нестабильной стенокардией и стентированием коронарных артерий на фоне стандартной антиагрегантной терапии принимают участие лабораторные критерии, которые отражают активацию системы гемостаза и остаточный тромбогенный риск.

INDEPENDENT PREDICTORS AND PROGNOSIS OF LONG-TERM MYOCARDIAL INFARCTION IN PATIENTS WITH UNSTABLE ANGINA AFTER CORONARY ARTERY STENTING

Miadzvedzeva Alena, Gelis Ludmila, Polonetsky Oleg, Russkikh Iryna

Republican Scientific and Practical Centre "Cardiology", Minsk, Belarus

Key words: unstable angina, coronary artery stenting, hemostasis, myocardial infarction.

FOR REFERENCES. Miadzvedzeva Alena, Gelis Ludmila, Polonetsky Oleg, Russkikh Iryna. Independent predictors and prognosis of long-term myocardial infarction in patients with unstable angina after coronary artery stenting. Neotlozhnaya kardiologiya i kardiovaskulyarnye riski [Emergency cardiology and cardiovascular risksl, 2021, vol. 5, no. 1, pp. 1109–1120.

Objective. to develop independent predictors for predicting long-term myocardial infarction (MI) in patients (pts) with unstable angina (UA) after coronary artery stenting (PCI) based on the results of a seven-year follow-up.

Materials and Methods. The study involved 165 pts with UA and coronary artery stenting (PCI). PCI was performed in 3.2±1.6 days after admission to the in-patient department. Drug-coated stents (Xience V and Biomatrix) were used, the average number of stents was 2.1±0.8 per person, the average length of the stented area was 43.12±25.6 mm, and the average diameter of the implanted stents was 3.12±0.5 mm. All patients were assessed for troponin I, myeloperoxidase, and C-reactive protein levels; coagulation hemostasis was assessed; and a thrombin generation test was performed. The aggregatogram was performed on the analyzer Multiplate (ASPI-test, ADP-test). The patients underwent echocardiography, coronary angiography. Double antithrombotic therapy with clopidogrel 75 mg and acetylsalicylic acid 75 mg was prescribed for 12 months. The follow-up period was 7.0±1.6 years.

Results. Repeated UA developed in 91 (55.2%) pts during a 7-year follow-up period, myocardial infarction was registered in 21 (12.7%) pts. Cardiovascular mortality was 7.3%.

Independent predictors of MI risk included: baseline D-dimer level \geq 796 ng/ml AUC 0.766 (RR 5.272; 95% CI 2,125-13,082), endogenous thrombin potential \geq 2294.5 nM*min AUC 0.912 (RR 4,769; 95% CI 2,457-10,546), N-terminal fragment of brain natriuretic peptide (NTproBNP) \geq 816 pg/ml AUC 0.794 (RR 1,935; 95% CI 1,218-3.075), homocysteine level \geq 16 µmol/l AUC 0.707 (RR 1.971; 95% CI 1.140-3.406), highly sensitive C-reactive protein \geq 6.4 g/l AUC 0.790 (RR 1.333; 95% CI 1.081-1.644), number of affected arteries \geq 3 AUC 0.714 (RR 2.129; 95% CI 1.237-2.664). The developed model for predicting myocardial infarction included the initial level of endogenous thrombin potential \geq 2294.5 nM*min, D-dimers \geq 796 ng/ml, and the number of affected coronary arteries \geq 3. For the developed model, the AUC was 0.964, which corresponds to the excellent quality of the model.

Conclusion. The prognosis of myocardial infarction in patients with unstable angina and stenting of the coronary arteries receiving the standard antiplatelet therapy involves laboratory criteria that reflect the activation of the hemostatic system and the residual thrombogenic risk.

Введение

В настоящее время с каждым годом увеличивается число чрескожных коронарных вмешательств, которые выполняются пациентам с острым коронарным синдромом (ОКС), что позволило снизить госпитальную смертность. Однако отдаленный прогноз у пациентов с ОКС остается неблагоприятным. По данным регистров GRACE, EuroHeart Survey II/III смертность за 5 лет у пациентов, перенесших нестабильную стенокардию (НС), в стационаре составляет 0,8-2,7%, через 6 месяцев – 3,6%, через 5 лет – 18% [1, 2]. При ОКС с подъемом ST и инфарктом миокарда (ИМ) без подъема ST смертность через 5 лет составляет 19% и 22% соответственно. Таким образом, общепринятое мнение о том, что прогноз при нестабильной стенокардии (НС) благоприятнее, чем у лиц с инфарктом миокарда, не соответствует действительности. Разработанные прогностические модели для пациентов с ОКС (TIMI, GRACE и PURSUIT) обладают высокой прогностической точностью в отношении смерти и развития инфаркта миокарда в течение 1 года и позволяют выявлять пациентов, которым необходимо выполнение коронароангиографии и реваскуляризации миокарда [1, 2]. Модифицированная шкала GRACE 2.0 позволяет прогнозировать госпитальную летальность и смертность пациентов после ОКС через 6, 12 и 36 месяцев [2]. В шкале GRACE 2.0, также, как и GRACE, используются данные о возрасте пациента, значении систолического артериального давления, частоты сокращений сердца, класса острой сердечной недостаточности (CH) по Killip при поступлении, данные об остановке сердца при поступлении, отклонении сегмента ST, а из лабораторных параметров используется лишь концентрация креатинина сыворотки и факт повышения уровня тропонина.

Большинство общепринятых шкал стратификации риска у пациентов с ОКС основаны на клинико-анамнестических признаках, изменениях электрокардиограммы (ЭКГ) и отдельных лабораторных показателях, которые не позволяют в полной мере оценить патофизиологические механизмы атерогенеза и тромбогенеза, и не в полной мере отражают кардиоваскулярный риск. Решение проблемы своевременного выявления пациентов с риском неблагоприятных исходов возможно путем определения и оценки уровня биомаркеров атеротромбоза и нестабильности гемостаза, которые зачастую реагируют раньше, чем клинико-инструментальные признаки обострения ишемической болезни сердца (ИБС). В настоящее время продолжается поиск независимых лабораторных предикторов, которые возможно использовать в прогнозировании конкретных осложнений (смертность, инфаркт миокарда, сложные нарушения ритма и др.) у пациентов с ОКС. По литературным данным, при сопоставлении нескольких маркеров, характеризующих различные патогенетические механизмы, был достигнут наиболее точный прогноз течения болезни и ее осложнений. При прогнозировании комбинированной конечной точки у пациентов с ОКС зарекомендовала себя комбинация маркера поражения кардиомиоцитов - тропонина, показателя системного воспалительного процесса – с-реактивного белка (СРБ) и лабораторного критерия выраженности сердечной недостаточности - мозгового натрийуретического пептида (МНП, или BNP) [3]. Таким образом, наиболее качественным и точным в определении вероятности развития осложнений при ОКС является мультимаркерный анализ.

Увеличение частоты чрескожных коронарных вмешательств (ЧКВ) со стентированием у пациентов с ОКС приводит к необходимости решения проблем, связанных с тромбозом и рестенозом внутри стентов,

которые могут послужить причиной развития инфаркта миокарда, сложных нарушений ритма, а также летальных исходов. Известно, что развитию негативных исходов после ЧКВ способствуют такие факторы, как перенесенный ИМ, сахарный диабет, почечная недостаточность, сниженная сократительная функция левого желудочка (ФВ ЛЖ < 40%), ранее выполненные процедуры реваскуляризации миокарда (коронарное шунтирование в анамнезе или ЧКВ в течение последних 6 месяцев), многососудистое поражение коронарного русла [4]. Таким образом, учитывая высокий риск повторных сердечно-сосудистых событий у пациентов с нестабильной стенокардией, подвергаемых ЧКВ и стентированию коронарных артерий на фоне активации процессов атеротромбоза, активации плазменного, сосудистого и тромбоцитарного звеньев гемостаза, необходимо выявление предикторов неблагоприятных исходов в данной группе пациентов. Высокая прогностическая значимость биохимических маркеров (СРБ, фибриногена, BNP, фактора Виллебранда, миелопероксидазы, тропонина, гомоцистеина) как независимых предикторов атеротромбоза позволила обосновать новую концепцию стратификации кардиоваскулярного риска и создать реальные возможности для разработки алгоритмов динамического наблюдения и индивидуального контроля за обострением атеротромбоза и эффективностью лечебно-профилактических мероприятий у лиц с нестабильным течением ИБС.

Известно, что для пациентов с ОКС вопрос полноценной антикоагулянтной и антиагрегантной терапии является крайне важным. Отсутствие адекватного подавления активности разных звеньев гемостаза может привести к остаточному тромбогенному риску и, соответственно, к развитию повторных сердечно-сосудистых событий. Результат лечения может зависеть от выбора препарата, его дозы и длительности проводимой антитромботической терапии, а также может быть связан с наличием коморбидности и сопутствующей терапией.

На агрегационную активность тромбоцитов влияет множество факторов: сахарный диабет, ожирение, генетические факторы, гиперхолестеринемия, прием нестероидных противовоспалительных средств (НПВС) и др. Особую роль при этом играют тромбоцитарно-плазменные характеристики свертывающего потенциала крови. Лабораторными параметрами, характеризующими активность тромбоцитарного гемостаза, могут служить показатели импедансной агрегатометрии: AUC ADP теста и AUC ASPI-теста, а также объем тромбоцита, определяемый в общем анализе крови (MPV). Увеличение объема тромбоцита свидетельствует о его большей адгезивной и агрегационной способности, связано с повышением протромботического потенциала и увеличением риска внутрикоронарного тромбоза. По литературным данным для пациента, принимающего ингибиторы Р2Ү12 рецепторов тромбоцитов (клопидогрел, прасугрел и др.), показатель площади под кривой AUC должен быть ниже 46 U (по результатам агрегатограммы, определенной прибором Multiplate), а для пациента, принимающего ацетилсалициловую кислоту, - менее 40 U [5]. Пациенты, у которых на фоне приема стандартной антиагрегантной терапии вышеуказанные значения не достигнуты, относятся к пациентам с высокой остаточной реактивностью тромбоцитов. Количество таких пациентов на фоне приема клопидогрела варьирует от 25% до 45%. Внедрение в клиническую практику прасугрела и тикагрелора позволит улучшить клинические исходы ОКС благодаря более интенсивному ингибированию функции тромбоцитов и, вероятно, меньшей резистентностью тромбоцитов к указанным препаратам [6]. Тем не менее клопидогрел остается наиболее часто применяемым блокатором Р2Ү12-рецепторов тромбоцитов в связи с высокой стоимостью новых препаратов и наличием на рынке менее дорогостоящих воспроизведенных антитромбоцитарных лекарственных средств (дженериков) [7]. Единого подхода по преодолению резистентности к антитромбоцитарным препаратам не существует. Для повышения эффективности профилактических мероприятий важно оценивать индивидуальную реакцию пациента на чувствительность к антитромбоцитарным препаратам во избежание повторных коронарных событий, и при необходимости принимать решение об использовании новых антитромботических препаратов [8].

НПВС могут подавлять антиагрегантный эффект ацетилсалициловой кислоты как при назначении до начала терапии аспирином, так и в комбинации с ним. При отмене данных препаратов агрегатограмма изменяется не ранее 5 суток после отмены. Пациентам с нестабильной стенокардией следует избегать длительного приёма НПВС, так как это может обусловить снижение эффективности ацетилсалициловой кислоты и усилить ульцерогенное действие. При оценке эффективности терапии также необходим контроль регулярности приема антиагрегантных препаратов и их комбинаций с конкурентно действующими лекарственными средствами (например, клопидогрела с омепразолом), что может существенно влиять на конечный результат агрегации тромбоцитов. Кроме того, необходимо корректировать дозировку статинов и оценивать полученный гиполипидемический эффект, особенно у лиц с дислипидемией.

1110 НЕОТЛОЖНАЯ КАРДИОЛОГИЯ И КАРДИОВАСКУЛЯРНЫЕ РИСКИ ■ ТОМ 5 №1 2021 г.

С целью оценки активности плазменного и сосудистого гемостаза можно использовать такие лабораторные показатели, как уровень Д-димеров, антитромбина III, фактор Виллебранда, а также использовать тест генерации тромбина с определением эндогенного потенциала тромбина и пиковой концентрации тромбина. Определение уровня тромбинемии может оказаться крайне важным в оценке риска тромботических осложнений, так как тромбин является ключевым маркером, характеризующим активность плазменного гемостаза, и у пациентов с риском развития повторных кардиальных событий может наблюдаться длительное повышение уровня тромбина.

Таким образом, учитывая высокий риск повторных сердечно-сосудистых событий у пациентов с нестабильной стенокардией, подвергаемых ЧКВ и стентированию коронарных артерий на фоне активации процессов атеротромбоза, активации плазменного, сосудистого и тромбоцитарного звеньев гемостаза, необходимо выявление предикторов

Таблица 1. Характеристика обследуемых пациентов

Показатель	Значение
Количество пациентов, n	165
Средний возраст (количество лет)	59,04±10,34
Женщины, n (%)	19 (11.5%)
Индекс массы тела (ИМТ), кг/м²	30,76±3,63
Курение, п (%)	84 (50,9%)
Сахарный диабет, n (%)	56 (33,9%)
Артериальная гипертензия, n (%)	148 (89,7%)
Инфаркт миокарда в анамнезе, n (%)	69 (41,8%)
ХБП с СКФ ≤ 60 мл/мин/м², n (%)	34 (20,6%)
ЧКВ в анамнезе, п (%)	52 (31,5%)
КШ в анамнезе, n (%)	15 (9%)
Отягощенная наследственность, n (%)	77 (46,6%)
ФВ ЛЖ, %	53,1±6,1
Дислипидемия, n (%)	186 (94,9%)

Примечания: ХБП — хроническая болезнь почек, СКФ — скорость клубочковой фильтрации, ЧКВ — чрескожное коронарное вмешательство, КШ — коронарное шунтирование, ФВЛЖ — фракция выброса левого желудочка.

Table 1. Characteristics of the examined patients

Indicator	Value
Number of patients, n	165
Average age (number of years)	59.04±10.34
Female, n (%)	19 (11.5%)
Body mass index, kg/m ²	30.76±3.63
Smoking, n (%)	84 (50.9%)
Diabetes mellitus, n (%)	56 (33.9%)
Arterial hypertension, n (%)	148 (89.7%)
Myocardial infarction in anamnesis, n (%)	69 (41.8%)
Chronic Kidney Disease EPI \leq 60 ml/min/m ² , n (%)	34 (20.6%)
PCI in anamnesis, n (%)	52 (31.5%)
CABG in anamnesis, n (%)	15 (9%)
Coronary heart disease heredity, n (%)	77 (46.6%)
Ejection fraction of the LV, %	53.1±6.1
Dyslipidemia, n (%)	186 (94.9%)

Notes: PCI – percutaneous coronary intervention, CABG-coronary artery bypass grafting.

неблагоприятных исходов в данной группе пациентов. Не исключено, что определение клинических, лабораторных и инструментальных факторов риска и предикторов повторных сердечно-сосудистых событий позволит выделить категорию пациентов, для которых необходимо проводить персонифицированную антитромботическую терапию с учетом выявленных изменений.

Цель: разработать независимые предикторы для прогнозирования инфаркта миокарда в отдаленном периоде у пациентов с нестабильной стенокардией после стентирования коронарных артерий по результатам семилетнего наблюдения.

Материалы и методы

За период 2014 г. – 2015 г. в исследование включено 165 пациентов с нестабильной стенокардией и стентированием коронарных артерий. Критерии включения в исследование: впервые возникшая, прогрессирующая или постинфарктная стенокардия, длительностью не более 4 недель от начала обострения. Критерии исключения: ИБС с наличием сердечной недостаточности IIБ и выше, поражение клапанов сердца, требующее хирургической коррекции, острое нарушение мозгового кровообращения (ОНМК), тромбоэмболия легочной артерии, тромбофлебит нижних конечностей, острые воспалительные заболевания различных органов и систем, заболевания крови, ревматологические заболевания.

В исследовании изучался риск возникновения следующих конечных точек: 1) повторная нестабильная стенокардия (с повторной госпитализацией), 2) острый инфаркт миокарда, 3) острое нарушение мозгового кровообращения, 4) летальные исходы (сердечно-сосудистая смертность), 5) повторная реваскуляризация у пациентов с нестабильной стенокардией.

Клинико-анамнестическая характеристика обследуемых пациентов представлена в таблице 1.

Всем лицам, включенным в исследование, выполнялись клинико-инструментальные и лабораторные обследования, включавшие в себя сбор анамнестических данных, физикальные исследования, ЭКГ в 12 отведениях, эхокардиографию (ЭхоКГ), коронароангиографию (КАГ). Лабораторные исследования включали в себя: общий анализ крови на автоматическом гемоанализаторе с оценкой морфометрических показателей тромбоцитов (MPV). Выполнялся биохимический анализ крови с определением биомаркера повреждения миокарда (уровня TnI), биомаркеров атеротромбоза (высокочувствительного С-реактивного белка (вчСРБ), уровня миелопероксидазы (МПО), маркера сердечной

недостаточности N-терминального фрагмента мозгового натрийуретического пептида (NTproBNP). Проводилась оценка коагуляционно-плазменного гемостаза с выполнением теста генерации тромбина (ЕТР – эндогенный потенциал тромбина, Peak Height - пиковая концентрация тромбина), определение уровня фибриногена, активированного частичного тромбопластинового времени (АЧТВ), международного нормализованного отношения (МНО), фактора Виллебранда, антитромбина III (характеризует противосвертывающую систему), и Д-димеров (маркера внутрисосудистого свертывания и фибринолиза). Агрегатограмма (оценка тромбоцитарного гемостаза) выполнялась на анализаторе Мультиплейт с определением ADP-теста (индуктор - АДФ) и ASPI-теста (индуктор - арахидоновая кислота). Исходные лабораторные показатели в группах наблюдения представлены в таблице 2.

Стентирование выполнялось на 3,2±1,6 сутки от поступления в стационар. Среднее кол-во пораженных сосудов 2,23±1,07 на человека, среднее количество имплантированных стентов 2,10±1,45 на человека, средняя длина стентированного участка 43,12±25,6 мм. Тяжесть поражения коронарного русла по шкале SYNTAX 31,2±3,4 баллов. Риск по шкале GRACE на момент стентирования 96,9± 17,46 баллов. Использовались стенты с лекарственным покрытием: стент Xience V (производитель - компания Abbott, США), покрыт эверолимусом, стент Biomatrix (производитель - компания Biosensors, Швейцария), покрыт лекарством Biolimus A9 и Ultimaster (Terumo) - сиролимус выделяющие стенты.

Всем пациентам с НС при поступлении назначался антикоагулянт эноксапарин из расчета 1 мг/кг массы тела каждые 12 часов подкожно. Средняя продолжительность антикоагулянтной терапии составляла 6,8±0,9 дней. Помимо лечения антикоагулянтами пациентам с нестабильной стенокардией назначалась двойная дезагрегантная терапия, включающая в себя клопидогрел в дозе 75 мг 1 раз в сутки и ацетилсалициловую кислоту (АСК) 75 мг 1 раз в сутки. Продолжительность двойной антиагрегантной терапии составила 12 месяцев. Срок наблюдения составил 7,0±1,6 года.

Статистический анализ. В зависимости от соответствия/несоответствия вида распределения анализируемых признаков закону нормального распределения (тест Колмогорова-Смирнова) в расчетах использованы параметрические или непараметрические методы. При сравнительном анализе для показателей с нормальным распределением применяли t-критерий Стьюдента. Поиск порогового значения, предсказывающего риск развития конечных точек, проводился методом ROC-анализа. Пороговое значение для исследуемого параметра выбиралось на ос-

Показатель	Значение
Тропонин I, нг/мл	0,055±0,01
Миелопероксидаза, пикомоль/л	281,2±64,3
Высокочувствительный С-реактивный белок, г/л	5,1±1,9
NTproBNP, пг/мл	310,6±62,1
AUC АДР- теста, U	43,6±16,1
PLT×10 ⁹ /л	210,5±30,8
MPV, fl	9,15±0,8
АЧТВ, сек	30,7±2,5
MHO	1,06±0,3
Протромбиновое время, сек	12,2±2,3
Антитромбин III, %	93,3±8,2
Д-димеры, нг/мл	244,5 ±21,1
Фактор Виллебранда, %	151,3±10,6
Эндогенный потенциал тромбина, нМ*мин	1550,34±49
Пиковая концентрация тромбина, нМ	278,5±20,2
Фибриноген, г/л	3,86±0,9

Примечания: NTproBNP—N-терминальный фрагмент мозгового натрийуретического пептида, PLT—количество тромбоцитов, MPV—объем тромбоцита, AЧТВ—активированное частично тромбопластиновое время, МНО—международное нормализованное отношение

Indicator	Value
Troponin I, ng/ml	0.055±0.01
Myeloperoxidase, picomole/l	281.2±64.3
hsC-reactive protein, g/l	5.1±1.9
NTproBNP, pg/ml	310.6±62.1
AUC AДP-test, U	43.6±16.1
Platelets (PLT)×10 ⁹ /l	210.5±30.8
Mean platelet volume (MPV), fl	9.15±0.8
APTT, sec	30.7±2.5
International normalized ratio (INR)	1.06±0.3
Prothrombin time (PTV), sec	12.2±2.3
Antithrombin III, %	93.3±8.2
D-imers, ng/ml	244.5 ±21.1
Von Willebrand factor, %	151.3±10.6
ETP, nM*min	1550.34±49
Peak Height of thrombin, nM	278.5±20.2
Fibrinogen, g/l	3.86±0.9

Notes: APTT — activated partially thromboplastin time; ETP — endogenous potential of thrombin.

новании максимальных показателей чувствительности и специфичности. Рассчитывалось отношение рисков – отношение частоты исходов среди лиц, подвергшихся и не подвергшихся воздействию изучаемого фактора по таблицам сопряженности. Для моделирования развития инфаркта миокарда использовалась регрессионная модель пропорционального риска Кокса. Анализ результатов исследования проводили на программы SPSS Statistica 26.

Результаты и обсуждение

При эндоваскулярной стратегии лечения за 7 лет наблюдения повторная нестабильная стенокардия развилась у 91 (55,2%) пациента, из них повторное стентирование коронар-

Таблица 2. Исходные лабораторные показатели в группах наблюдения

Table 2.
Baseline laboratory parameters in the observation groups

1113

Vol. 5 №1 2021

EMERGENCY CARDIOLOGY AND CARDIOVASCULAR RISKS

Values of the area under

according to the forecast

the curves (AUC)

of the complicated

of the observation

Table 5.

course

period

Таблица 3. Клинические исходы у пациентов с нестабильной стенокардией за период наблюдения (7 лет)

Table 3. Clinical outcomes in patients with unstable angina over the follow-up period (7 years)

Осложнения	n = 165
Повторная НС, п (%)	91 (55,2%)
Инфаркт миокарда, n (%)	21 (12,7%)
Повторное стентирование, n (%)	86 (52,1%)
ОНМК, ТИА, n (%)	7 (4,2%)
Сердечно-сосудистая смертность, n (%)	12 (7,3%)
Кровотечения, n (%)	18 (10,9%)

Примечания: НС—нестабильная стенокардия, ОНМК—острое нарушение мозгового кровообращения, ТИА—транзиторная ишемическая атака.

Complications	n = 165
Repeated unstable angina, n (%)	91 (55.2%)
Myocardial infarction, n (%)	21 (12.7%)
Re-stenting, n (%)	86 (52.1%)
Stroke, n (%)	7 (4.2%)
Cardiovascular mortality, n (%)	12 (7.3%)
Bleeding, n (%)	18 (10.9%)

ных артерий выполнено у 86 (52,1%) пациентов, инфаркт миокарда зарегистрирован у 21 (12,7%) человека, ОНМК развилось в 7 (4,2%) случаях. Сердечно-сосудистая смертность составила 7,3% (таблица 3).

Развитие повторных сердечно-сосудистых событий в разные сроки наблюдения у пациентов представлено в таблице 4.

Причиной сердечно-сосудистой смерти в ранние сроки явилось развитие тромбоза

стентов у двух пациентов с последующим развитием инфаркта миокарда и повторной реваскуляризацией, прогрессированием сердечной недостаточности и необходимостью инотропной поддержки. Один пациент умер внезапно во сне от острой коронарной недостаточности и относился к группе лиц с высокой остаточной реактивностью тромбоцитов. Сердечно-сосудистая смерть на следующих этапах наблюдения была обусловлена прогрессированием хронической сердечной недостаточности у пациентов с рецидивами инфаркта миокарда и повторной реваскуляризацией.

При анализе общепринятых факторов риска развития неблагоприятных исходов у пациентов с нестабильной стенокардией (степень риска по шкале GRACE, ранняя постинфарктная стенокардия, сниженная сократительная функция ЛЖ (ФВ < 40 %), сахарный диабет, ранее выполненные процедуры реваскуляризации миокарда (коронарное шунтирование в анамнезе или ЧКВ в течение последних 6 месяцев), почечная недостаточность (скорость клубочковой фильтрации $(CK\Phi) < 60$ мл/мин/1,73 м²) выявлено, что наиболее значимыми факторами в нашей выборке пациентов оказались: хроническая болезнь почек (XБП) (p = 0,003), ЧКВ в анамнезе (p = 0.014) и сахарный диабет (p = 0.041). По остальным показателям достоверных данных не получено (таблица 5, рисунок 1).

Осложнение	До 12 месяцев	12-24 месяцев	24–36 месяцев	36–48 месяцев	48–60 месяцев	60-72 месяцев	72-84 месяцев
Повторная НС, п (%)	25 (15,2%)	16 (9.7%)	12 (7,3%)	11 (6,7%)	10 (6,7%)	8 (4,8%)	9 (5,5%)
ИМ, n (%)	10 (6%)	4 (2,4%)	2 (1,2%)	1 (0,6%)	1 (0,6%)	2 (1,2%)	1 (0,6%)
OHMK, n (%)	3 (1,8%)	2 (1,2%)	-	1 (0,6%)	1 (0,6%)	-	-
Сердечно-сосудистая смертность, n (%)	3 (1,8%)	2 (1,2%)	1 (0,6%)	2 (1,2%)	2 (1,2%)	1 (0,6%)	1 (0,6%)
Всего осложнений, п (%)	41 (24,8%)	24 (14,5%)	15 (9%)	15 (9%)	14 (8,5%)	11 (6,6%)	11 (6,6%)

Примечания: НС – нестабильная стенокардия, ИМ – инфаркт миокарда, ОНМК – острое нарушение мозгового кровообращения

Table 4. Clinical outcomes at different follow-up periods

Таблица 4.

Клинические

наблюдения

исходы в разные сроки

Complication	Up to 12 months	12-24 months	24-36 months	36-48 months	48-60 months	60-72 months	72-84 months
Repeated UA, n (%)	25 (15.2%)	16 (9.7%)	12 (7.3%)	11 (6.7 %)	10 (6.7 %)	8 (4.8 %)	9 (5.5%)
MI, n (%)	10 (6%)	4 (2.4%)	2 (1.2%)	1 (0.6%)	1 (0.6%)	2 (1.2%)	1 (0.6%)
Stroke, n (%)	3 (1.8%)	2 (1.2%)	-	1 (0.6%)	1 (0.6%)	-	-
Cardiovascular mortality, n (%)	3 (1.8%)	2 (1.2%)	1 (0.6%)	2 (1.2%)	2 (1.2%)	1 (0.6 %)	1 (0.6 %)
Total complications, n (%)	41 (24.8%)	24 (14.5%)	15 (9%)	15 (9%)	14 (8.5%)	11 (6.6%)	11 (6.6%)

Notes: UA — unstable angina, MI — myocardial infarction

Таблица 5.
Значения площади под кривыми (AUC) по прогнозу осложненного течения периода наблюдения

Переменные результата	Область	Стандартная	андартная Асимптотич.	Асимптотический 95% доверительный интерв		
проверки	Область	ошибка	знач.	Нижняя граница	Верхняя граница	
Сахарный диабет	0,567	0,033	0,041	0,502	0,632	
Инфаркт миокарда в анамнезе	0,561	0,033	0,063	0,495	0,626	
ЧКВ в анамнезе	0,580	0,033	0,014	0,516	0,645	
АКШ в анамнезе	0,522	0,033	0,495	0,457	0,587	
ХБП	0,596	0,033	0,003	0,531	0,661	
Риск по шкале Грейс ≥ 140 бал.	0,497	0,033	0,932	0,433	0,561	
ФВ ЛЖ ≤ 40%	0,547	0,034	0,152	0,481	0,613	

Примечания: ЧКВ— чрескожное коронарное вмешательство, АКШ-аортокоронарное шунтирование, ХБП-хроническая болезнь почек, ФВЛЖ—фракция выброса левого желудочка.

Validation result variables	A	Standard	Asymptotic.	Asymptotic 95% confidence interval		
validation result variables	Area	error	sign.	Lower bound	Upper bound	
Diabetes mellitus	0.567	0.033	0.041	0.502	0.632	
Myocardial infarction	0.561	0.033	0.063	0.495	0.626	
PCI	0.580	0.033	0.014	0.516	0.645	
CABG	0.522	0.033	0.495	0.457	0.587	
Chronic Kidney Disease	0.596	0.033	0.003	0.531	0.661	
The risk on the Grace scale is \geq 140 points.	0.497	0.033	0.932	0.433	0.561	
EF LV ≤ 40%	0.547	0.034	0.152	0.481	0.613	

Notes: PCI — percutaneous coronary intervention, CABG — coronary artery bypass grafting, EFLV — left ventricular ejection fraction.

кальной сократимости миокарда, а также количество пораженных коронарных артерий (с атеросклеротической бляшкой ≥ 50%) (рисунок 2).

В таблице представлены наиболее зна-

В таблице представлены наиболее значимые показатели по полученным результатам площади под кривой (таблица 8).

ROC Кривые Сахарный диабет Инфаркт миокарда 0.8 в анамнезе ЧКВ в анамнезе АКШ в анамнезе Риск по шкале Грейс ≥ 140 бал. 0,4 Риск по шкале Грейс 108–139 бал. ФВ ЛЖ < 40 Базовая линия 0,8 Специфичность

Рисунок 1. ROC-кривые для общепринятых факторов риска развития неблагоприятных исходов у пациентов с нестабильной стенокардией за период наблюдения

1,0

0,8

0,8

0,6

0,6

0,0

0,2

0,0

0,2

0,0

0,2

0,4

0,0

0,2

0,4

0,6

0,8

1- Specificity

Soerce of the Curve

— Diabetes melitus
— Myocardial infaction
— PCI
— CABG
— Chronic Kidney Disease
— Grace ≥ 140 pts
— EF LV < 40
— Reference line

Figure 1. ROC curves for generally accepted risk factors for adverse outcomes in patients with unstable angina over the follow-up period

С целью повышения эффективности прогнозирования неблагоприятных исходов нами дополнительно проанализированы лабораторные параметры и инструментальные данные у пациентов с инфарктом миокарда за период наблюдения (группа 1) и без данного события (группа 0). Выявлены достоверные различия (р = 0,000) по исходному уровню Д-димеров, эндогенному потенциалу тромбина, вчСРБ, индексу локальной сократимости миокарда (ИЛСМ), ФВ ЛЖ, количеству пораженных артерий, а также гомоцистеину и NTproBNP (р = 0,004), фактору Виллебранда (р = 0,001), объему тромбоцита (р = 0,03) (таблица 6).

Возможность использования исходных лабораторных показателей для прогнозирования повторных сердечно-сосудистых событий в отдаленном сроке наблюдения доказывает тот факт, что у пациентов с развитием осложнений (группа 1) исходное превышение уровня биомаркеров достоверно не изменялось через 1 месяц контроля, через 3 месяца после перенесенной НС нормализация биомаркеров произошла ~ у 50% пациентов, у 28% снизилась лишь к 6 месяцам после НС, и у 22% через 12 месяцев сохранялось повышение ряда биомаркеров (Д-димеры, эндогенный потенциал тромбина) на фоне стандартной антитромботической терапии. Для пациентов без осложнений за весь период наблюдения отмечалась нормализация большинства изучаемых лабораторных данных в сроки от 1 до 3 мес наблюдения (таблица 7).

Полученные данные свидетельствуют о том, что несмотря на клиническую стабилизацию состояния, нормализация уровня изученных маркеров происходит не ранее, чем через 3 месяца наблюдения, а у пациентов с развитием повторных сердечно-сосудистых событий через 6 и более месяцев, что свидетельствует об особенностях атерои тромбогенеза у этих пациентов.

В результате проведения рок-анализа для прогнозирования инфаркта миокарда наиболее значимыми оказались исходные уровни эндогенного потенциала тромбина, Д-димеров, гомоцистеина, СРБ, индекса ло-

of the level of biomarkers

of atherothrombosis and vascular-platelet

hemostasis compared

to the baseline level

Table 7.

Dynamics

Таблица 6.

Средние значения лабораторных и инструментальных показателей в группах лиц с осложненным (инфаркт миокарда) и неосложненным течением

Показатель	Конечн.т за 7 лет	Среднее	Станд. отклонения	Станд. средняя ошибка	Достоверность различий
D	0	423,15	727,653	62,168	0.000
Д-димеры, нг/мл	1	823,63	1329,892	255,938	0,000
Эндогенный потенциал	0	1829,07	365,195	31,201	0,000
тромбина (ЕТР), нМ*мин	1	2566,11	311,743	59,995	0,000
NITO O DNID/	0	352,11	827,154	70,669	0.004
NTproBNP, пг/мл	1	870,07	966,154	185,936	0,004
вчСРБ, г/л	0	4,197	4,5105	0,3854	0.000
	1	8,272	4,7426	0,9127	0,000
Средний объем тромбоцита	0	9,087	0,8263	0,0706	0.03
(MPV), fl	1	9,437	0,7217	0,1389	0,03
Foresture Touris August / F	0	14,0999	3,69560	0,31574	0.004
Гомоцистеин, мкмоль/л	1	16,3315	2,91344	0,56069	0,004
IADOM Society	0	1,3239	0,31834	0,02720	0.000
ИЛСМ, баллы	1	1,8207	0,55715	0,10722	0,000
AD DV 0/	0	54,03	8,410	0,719	0.000
ФВ ЛЖ, %	1	42,26	12,990	2,500	0,000
* * * * * * * * * *	0	112,77	19,729	1,686	0.001
Фактор Виллебранда,%	1	147,96	17,470	3,362	0,001
V	0	2,50	1,099	0,094	0.000
Кол-во поражен.артер.	1	3,26	0,656	0,126	0,000

Примечания: NTproBNP—N-терминальный фрагмент мозгового натрийуретического пептида, вчСРБ—высокочувствительный С-реактивный белок, ИЛСМ—индекс локальной сократимости миокарда, ФВ ЛЖ—фракция выброса левого желудочка.

Table 6.
Average values
of laboratory
and instrumental
parameters
in groups of persons
with complicated
(myocardial infarction)
and uncomplicated
course

Indicator	End point in 7 years	Mean	Std. deviations	Std. average error	Validity of differences
D dimension of total	0	423.15	727.653	62.168	0.000
D-dimers, ng / ml	1	823.63	1329.892	255.938	0.000
ETP, nM*min	0	1829.07	365.195	31.201	0.000
	1	2566.11	311.743	59.995	0.000
NTproBNP, pg/ml	0	352.11	827.154	70.669	0.004
	1	870.07	966.154	185.936	0.004
hsCRP, g/l	0	4.197	4.5105	0.3854	0.000
	1	8.272	4.7426	0.9127	0.000
	0	9.087	0.8263	0.0706	0.03
Mean platelet volume, fl	1	9.437	0.7217	0.1389	
Haman matrices and all	0	14.0999	3.69560	0.31574	0.004
Homocysteine, mmol/l	1	16.3315	2.91344	0.56069	0.004
NAMAL in a line to	0	1.3239	0.31834	0.02720	0.000
WMI, points	1	1.8207	0.55715	0.10722	0.000
FF IV 0/	0	54.03	8.410	0.719	0.000
EF LV, %	1	42.26	12.990	2.500	0.000
The Willebrand factor, %	0	112.77	19.729	1.686	0.001
	1	147.96	17.470	3.362	0.001
Niconale and a few attacks and a set and a	0	2.50	1.099	0.094	0.000
Number of affected arteries	1	3,26	0,656	0,126	0.000

N o t e s: ETP — Endogenous potential of thrombin, NTproBNP — N-terminal fragment of brain natriuretic peptide, hsCRP — highly sensitive C-reactive protein, WMI — wall motion index, EF LV — left ventricular ejection fraction.

Таблица 7. Динамика уровня биомаркеров атеротромбоза и плазменного гемостаза по сравнению с исходным уровнем

Показатель	Группа 0				Группа 1			
Разница с исх (Ме)	1 мес	3 мес	6 мес	12 мес	1 мес	3 мес	6 мес	12 мес
Миелопероксидаза, пмоль/л	-19	-29*	-36*	-30*	18	20*	0	-11
Фактор Виллебранда, %	-22*	-29*	-23*	-27*	15	14	-10	-18*
вчСРБ, г/л	-1,6	-1,5	-1,9*	-2,3*	0,4	0,6	0,3	0,3
Средний объем тромбоцита, fl	-1,21	-1,1	-1,45*	-1,5*	0,11	0,12	-0,1*	-0,23*
Пиковая концентрация тромбина, наномоль	-50*	-54*	-60*	-69*	10	-3	-11*	-20*
эндогенный потенциал тромбина, нМ*мин	-310*	-320*	-344*	-360*	23	10	-92	-99*
*– достоверность p < 0,05								

Примечание: вчСРБ — высокочувствительный С-реактивный белок.

Indicator		Gro	up 0		Group 1			
The difference from the baseline	1 mon	3 mon	6 mon	12 mon	1 mon	3 mon	6 mon	12 mon
Myeloperoxidase, picomole/l	-19	-29*	-29*	-30*	18	20*	0	-10
VW factor, %	-22*	-28*	-24*	-27*	15	12	-10	-18*
hsCRP, g/l	-1.6	-1.5	-1.9*	-2.3*	0.4	0.6	0.3	0.3
MPV, fl	-1.21	-1.1	-1.45*	-1.5*	0.11	0.12	-0.1*	-0.23*
Peak Height, nM	-50*	-54*	-60*	-69*	10	-3	-11*	-20*
ETP, nM*min	-310*	-320*	-344*	-360*	23	10	-92	-99*
*– reliability p < 0.05								

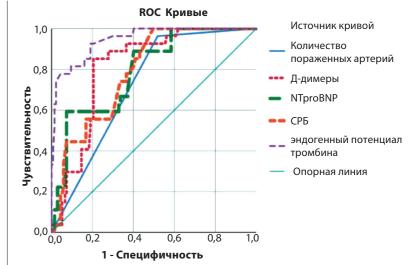
Notes: VW factor — Von Willebrand factor, hsCRP — highly sensitive C-reactive protein, MPV — mean platelet volume, ETP — Endogenous potential of thrombin.

Переменные результата проверки	Область	Стандартная	Асимптоти-	Асимптотический 95% доверительный интервал			
		ошиока	ческ. знч.	Нижняя граница	Верхняя граница		
Д-димеры	0,833	0,037	0,000	0,740	0,884		
NTproBNP	0,794	0,043	0,000	0,709	0,879		
ИЛСМ	0,793	0,043	0,000	0,709	0,877		
гомоцистеин	0,707	0,052	0,001	0,605	0,808		
вчСРБ	0,790	0,039	0,000	0,713	0,866		
эндогенный потенциал тромбина	0,945	0,021	0,000	0,905	0,986		
Количество пораженных артерий	0,714	0,045	0,000	0,625	0,802		

Таблица 8.
Значения площади под кривыми (AUC) по прогнозу развития инфаркта миокарда за весь период наблюдения

Примечания: NTproBNP — N-терминальный фрагмент мозгового натрийуретического пептида, ИЛСМ — индекс локальной сократимости миокарда, вчСРБ — высокочувствительный С-реактивный белок.

Test variables	Area	Standard	Asymptomatic	Asymptomatic confidence interval 95%			
		error	sign	Lower boundary	Upper boundary		
D-dimer	0.833	0.037	0.000	0.740	0.884		
NTproBNP	0.794	0.043	0.000	0.709	0.879		
WMI	0.793	0.043	0.000	0.709	0.877		
homocysteine	0.707	0.052	0.001	0.605	0.808		
hsCRP	0.790	0.039	0.000	0.713	0.866		
endogenous thrombin potential	0.945	0.021	0.000	0.905	0.986		
Number of affected arteries	0.714	0.045	0.000	0.625	0.802		


Table 8.
Values of the area under the curves (AUC) for the prognosis of myocardial infarction for the entire follow-up period

Notes: NTproBNP – N-terminal fragment of brain natriuretic peptide, WMI – wall motion index, hsCRP – highly sensitive C-reactive protein.

Представленные данные свидетельствуют о том, что большинство лабораторных показателей связано с активацией системы гемостаза и, возможно, недостаточной коррекцией остаточного тромбогенного риска в дальнейшем, о чем свидетельствует представленные данные по динамике показателей у пациентов с развитием инфаркта миокарда на протяжении всего периода наблюдения. Известно, что тромбообразование играет ключевую роль в развитии различных сердечно-сосудистых событий, при этом количественное значение Д-димера коррелирует с выраженностью атеросклероза [9, 10, 11].

Оптимальные пороговые значения предикторов развития инфаркта миокарда за весь период наблюдения представлены в таблице 9.

Для выявленных предикторов рассчитан хи-квадрат Пирсона и относительный риск развития инфаркта миокарда за 7-летний период наблюдения. Данные представлены в таблице 10.

Диагональные сегменты, сгенерированные связями.

Рисунок 2. ROC-кривые для биомаркеров, инструментальных факторов как предикторов инфаркта миокарда за период наблюдения

1116

Мастер-класс Master-class

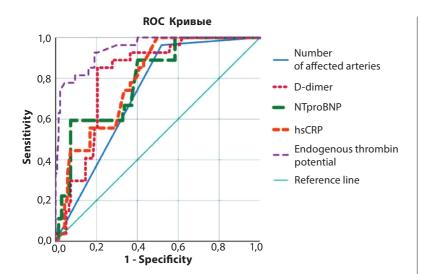


Figure 2. ROC curves for biomarkers, instrumental factors as predictors of myocardial infarction during the follow-up period

Таблица 9. Оптимальные пороговые значения предикторов развития инфаркта миокарда за весь период наблюдения

Предикторы риска	Пороговое значение	Чувствитель- ность, %	Специфич- ность, %
Д-димеры, нг/мл	≥ 796	65,2	86
NTproBNP, пг/мл	≥ 816	67,4	88
Гомоцистеин, мкмоль/л	≥ 16	74	72
вчСРБ, г/л	≥ 6,4	77,8	76,4
эндогенный потенциал тромбина, нМ*мин	≥ 2294,5	81,5	99,8
Кол-во пораженных коронарных артерий	≥ 3	80	84

Примечания: NTproBNP — N-терминальный фрагмент мозгового натрийуретического пептида, вчСРБ — высокочувствительный С-реактивный белок.

Table 9. Optimal threshold values of predictors of the development of myocardial infarction over the entire follow-up period

Risk predictors	Threshold value	Sensitivity, %	Specificity, %
D-dimers, ng/ml	≥ 796	65.2	86
NTproBNP, ng/ml	≥ 816	67.4	88
Homocysteine, mmol/l	≥ 16	74	72
hsCRP, g/I	≥ 6.4	77.8	76.4
endogenous thrombin potential, nM * min	≥ 2294.5	81.5	99.8
Number of affected coronary arteries	≥ 3	80	84

Notes: NTproBNP – N-terminal fragment of brain natriuretic peptide, hsCRP – highly sensitive C-reactive protein.

При расчете относительного риска развития ИМ выявлено, что наибольшие значения отмечаются при уровне Д-димеров ≥ 796 нг/мл (ОР 5,272; 95% ДИ 2,125-13,082) и эндогенном потенциале тромбина ≥ 2294,5 нМ*мин (ОР 4,769; 95% ДИ 2,457-10,546), что свидетельствует о том, что данный риск является инициирующим и данные лабораторные критерии, с высокой вероятностью, войдут в прогностическую модель. Независимыми критериями также явились: исходный уровень NTproBNP ≥ 816 пг/мл (ОР 1,935; 95% ДИ 1,218-3,075), уровень гомоцистеина ≥ 16 мкмоль/л (OP 1,971; 95% ДИ 1,140-3,406), вчСРБ \geq 6,4 г/л (ОР 1,333; 95% ДИ 1,081-1,644), количество пораженных коронарных артерий ≥ 3 (ОР 2,129; 95% ДИ 1,237-2,664).

Универсальные критерии коэффициентов модели и переменные в уравнении представлены в таблицах 11 и 12.

В разработанную модель прогнозирования инфаркта миокарда включены исходный уровень эндогенного потенциала тромбина ≥ 2294,5 нМ*мин, Д-димеров ≥ 796 нг/мл и количество пораженных коронарных артерий ≥ 3 (рисунок 3).

Для разработанной модели AUC для группы 1 и группы 0 составила 0,964, что соответствует отличному качеству модели. Проведение тестирования модели на обучающей выборке предсказало благоприятное течение в 96,7% случаев и развитие инфаркта миокарда в 81% случаев (общий процент 93,8%). Прогнозирование на тестовой выборке предсказало благоприятное течение в 97,8% случаев и развитие инфаркта миокарда в 66,7% случаев (общий процент 94,1%).

Обсуждение

Эндогенный потенциал тромбина оказался наиболее значимым предиктором в прогнозировании развития инфаркта миокарда за весь период наблюдения. Данный тест позволяет оценить состояние плазменно-коагуляционного и частично тромбоцитарнососудистого звеньев гемостаза [12, 13, 14, 15]. При сравнении показателей теста генерации тромбина, выполненного перед ЧКВ, между группами пациентов с развитием и без развития ИМ в течение всего периода наблюдения после реваскуляризации было выявлено статистически значимое отличие ЕТР (без осложнений - 1480,8 ± 434,9 против $1974,9 \pm 403,6$; p = 0,002 в группе с осложнениями), что свидетельствует о более высокой интенсивности тромбинообразования у пациентов с развитием ИМ. Установлено также, что у всех пациентов после ЧКВ происходит увеличение уровня эндогенного потенциала тромбина в сроки от 1 до 10 суток после стентирования, причем у части пациентов высокий уровень тромбина сохраняется повышенным от 6 до 12 месяцев после стентирования и связан с развитием инфаркта миокарда в последующем.

Следующий лабораторный показатель, который включен в модель, - исходный уровень Д-димера. Повышение содержания Д-димера в плазме крови свидетельствует об активном внутрисосудистом фибринообразовании, а также отражает активацию системы фибринолиза [9, 10]. Исследования ряда авторов доказали прогностическую значимость уровня Д-димеров для пациентов с ОКС [10]. В нашем исследовании исходное повышение

Показатель	Хи-квадрат		OD	95% ДИ		
Показатель	Пирсона	р	OP	Нижняя граница	Верхняя граница	
Д-димеры ≥ 796 нг/мл	41,301	0,000	5,272	2,125	13,082	
NTproBNP ≥ 816 пг/мл	16,437	0,000	1,935	1,218	3,075	
Гомоцистеин ≥ 16 мкмоль/л	9,872	0,000	1,971	1,140	3,406	
эндогенный потенциал тромбина ≥ 2294,5нМ*мин	61,733	0,000	4,769	2,457	10,546	
вчСРБ ≥ 6,4 г/л	12,118	0,001	1,333	1,081	1,644	
Кол-во пораженных коронарных артерий ≥ 3	10,275	0,000	2,129	1,237	2,664	

Примечание: NTproBNP — N-терминальный фрагмент мозгового натрийуретического пептида, вчСРБ — высокочувствительный С-реактивный белок.

Indicator	Pearson's		DD.	95%	6 CI
indicator	Chi-square	р	RR	Lower boundary	Upper boundary
D-dimers ≥ 796 ng/ml	41.301	0.000	5.272	2.125	13.082
NTproBNP ≥ 816 pg/ml	16.437	0.000	1.935	1.218	3.075
Homocysteine ≥ 16 μmol/l	9.872	0.000	1.971	1.140	3.406
endogenous thrombin potential, nM·min ≥ 2294.5 nM*min	61.733	0.000	4.769	2.457	10.546
$hsCRP \ge 6.4 g/I$	12.118	0.001	1.333	1.081	1.644
Number of affected coronary arteries ≥ 3	10.275	0.000	2.129	1.237	2.664

Notes: NTproBNP – N-terminal fragment of brain natriuretic peptide, hsCRP-highly sensitive C-reactive protein

Шаг	-2 Log-	Общая	(оценка)	Изменение от пр	едыдущего шага	Изменение от предыдущего блока		
шаі	правдоподобие	Хи-квадрат	значимость	Хи-квадрат	Значимость	Хи-квадрат	Значимость	
1	199,394	66,685	0,000	48,890	0,000	48,890	0,000	
2	189,177	76,191	0,000	10,217	0,001	59,107	0,000	
3	182,645	79,161	0,000	6,532	0,011	65,639	0,000	

Универсальные критерии коэффициентов модели

Таблица 11.

Таблина 10.

миокарда

за весь период

наблюдения

Table 10.

Risk ratio of myocardial

follow-up period

infarction over the entire

Относительный риск

развития инфаркта

Step	-2 Log-likelihood	Overa	II Score	Change from th	ne previous step	Change from the previous block		
step		Chi-square	significance	Chi-square	significance	Chi-square	significance	
1	199.394	66.685	0.000	48.890	0.000	48.890	0.000	
2	189.177	76.191	0.000	10.217	0.001	59.107	0.000	
3	182.645	79.161	0.000	6.532	0.011	65.639	0.000	

Table 11. Universal criteria for model coefficients

Шаг	Показатель	В	Ст.ош.	Вальд	Ст.св.	Значимость	Exp (B)	ДИ95% нижняя	ДИ95% верхняя
4	Кол-во поражен.артерий	1,969	1,035	3,621	1	0,04	7,162	1,043	54,416
	Д-димеры, нг/мл	2,168	0,614	12,462	1	0,000	8,737	2,622	29,109
	Эндогенный потенциал тромбина нМ·мин	2,894	0,542	28,541	1	0,000	18,067	6,248	52,238

Таблица 12. Переменные в уравнении

Step	Indicator	В	St.er	Wald	Degree of freed.	Significance	Exp (B)	CI 95% lower	CI 95% upper
4	Number of affected arteries	1.969	1.035	3.621	1	0.04	7.162	1.043	54.416
	D-dimer, ng/ml	2.168	0.614	12.462	1	0.000	8.737	2.622	29.109
	endogenous thrombin potential, nM·min	2.894	0.542	28.541	1	0.000	18.067	6.248	52.238

Table 12. Variables in the equation

уровня Д-димера, указывающее на активацию системы свертывания крови, отмечено почти у половины обследованных пациентов, причем через 12 месяцев контроля превышение верхней границы нормы в 2 раза сохранялось у 30% пациентов.

Для пациентов с многососудистым поражением коронарного русла (атеросклеротические бляшки в 3 и более артерий ≥ 50%) характерна более выраженная активация и факторов свертывания, и атеротромбоза. У большинства пациентов с наличием атеросклеротических бляшек в 3 и более ко-

ронарных артериях (даже без критического стенозирования) имеется поражение периферических артерий: брахиоцефальных или артерий нижних конечностей, что свидетельствует об активном и распространенном атеротромботическом процессе с активацией внутрисосудистого воспаления и параметров гемостаза. В связи с этим пациенты с многососудистым поражением коронарного русла нуждаются в дополнительной оценке факторов риска тромбозов и проведении персонифицированной медикаментозной терапии.

0.8

Рисунок 3.

ROC-кривые
для модели
прогнозирования
инфаркта миокарда за период
наблюдения
(1 — прогнозирование смертности;
0 — прогнозирование
благоприятного
течения)

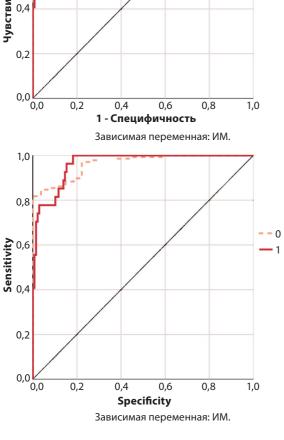


Figure 3.

ROC curves
for the model
for predicting
myocardial infarction
over the follow-up
period
(1 – predicting
mortality;
0 – predicting
a favorable course)

REFERENCES

- Steg P.G., Goldberg R.J., Gore J.M., Fox K.A., Eagle K.A., Flather M.D., Sadiq I., Kasper R., Rushton-Mellor S.K., Anderson F.A. Baseline characteristics, management practices, and in-hospital outcomes of patients hospitalized with acute coronary syndromes in the Global Registry of Acute Coronary Events (GRACE). Am J Cardiol, 2002, vol. 90, no. 4, pp. 358-363, doi: 10.1016/S0002-9149(02)02489-x.
- Fox KA, Anderson FA. Jr., Dabbous O.H., Steg P.G., López-Sendón J., Van de Werf F., Budaj A., Gurfinkel E.P., Goodman S.G., Brieger D. Intervention in acute coronary syndromes: do patients undergo intervention on the basis of their risk characteristics? The Global Registry of Acute Corporatives (CRACE). Medical 2007; 40(2): 2012. doi: 10.1006/j.com. 2012.00.
- Coronary Events (GRACE). Heart, 2007, vol. 93, no. 2, pp. 177-182. doi: 10.1136/hrt. 2005.084830.

 3. Wylie J.V., Murphy S.A., Morrow D.A., de Lemos J.A., Antman E.M., Cannon C.P. Validated risk score predicts the development of congestive heart failure after presentation with unstable angina or non-ST-elevation myocardial infarction: results from OPUS-TIMI 16 and TAC-ITCS-TIMI 18. Am Heart 1, 2004, vol. 148, no. 1, pp. 173-180. doi: 10.1016/j.ahj.2003.12.018.
- 4. Mazaev V.P., Komkov A.A., Rjazanova S.V. Razvitie restenozov v koronarnyh arterijah na pozdnih srokah posle chreskozhnyh koronarnyh vmeshatel'stv pri implantacii golometallicheskih ili pokrytyh lekarstvom stentov v zavisimosti ot klinicheskih dannyh i faktorov riska [Long-term in-stent restenosis development in cronary arteries after percutaneous coronary interventions with bare metal and drug-eluting stents implantation depending on clinical data and risk factors]. Sovremennye problemy naukii obrazovanija, 2017, no. 4, pp. 51. doi: 10.17513/spno.26645 (in Russian).
- Sibbing D., Morath T., Braun S., Stegherr J., Mehilli J., Vogt W., Schömig A., Kastrati A., von Beckerath N. Clopidogrel response status assessed with Multiplate point-of care analysis and the incidence and timing of stent thrombosis over six months following coronary stenting. *Thromb Haemost*, 2010, vol. 103, no. 1, pp. 151-159. doi: 10.1160/TH09-05-0284.
- Trenk D., Stone G.W., Gawaz M. Kastrati A., Angiolillo D.J., Müller U., Richardt G., Jakubowski J.A., Neumann F.J. A randomised trial of prasugrel versus clopidogrel in patients with high platelet reactivity on clopidogrel after elective percutaneous coronary intervention with implantation of drug-eluting stents: results of the TRIGGER-PCI (Testing Platelet Reactivity in Patients Undergoing Elective Stent Placement on Clopidogrel to Guide Alternative Therapy With Prasugrel) study. J Am Coll Cardiol, 2012, vol. 59, no. 24, pp. 2159-2164. doi: 10.1016/j.jacc.2012.02.026.

Заключение

Независимыми предикторами развития инфаркта миокарда являются: исходный уровень Д-димеров ≥ 796 нг/мл (ОР 5,272; 95% ДИ 2,125-13,082), эндогенного потенциала тромбина ≥ 2294,5 нМ*мин (ОР 4,769; 95% ДИ 2,457-10,546), исходный уровень NTproBNP ≥ 816 пг/мл (ОР 1,935; 95% ДЙ 1,218-3,075), гомоцистеина ≥ 16 мкмоль/л (OP 1,971; 95% ДИ 1,140-3,406), вчСРБ $\geq 6.4 \text{ г/л}$ (OP 1,333; 95% ДИ 1,081-1,644), количество пораженных коронарных артерий ≥ 3 (ОР 2,129; 95% ДИ 1,237-2,664). В разработанную модель прогнозирования инфаркта миокарда включены исходный уровень эндогенного потенциала тромбина ≥ 2294,5 нМ*мин, Д-димеров ≥ 796 нг/мл и количество пораженных коронарных артерий ≥ 3.

В прогнозировании инфаркта миокарда на разных этапах наблюдения принимают участие лабораторные критерии, которые отражают активацию системы гемостаза (эндогенный потенциал тромбина и уровень Д-димеров). Данный факт свидетельствует о том, что сохраняется остаточный тромбогенный риск у пациентов с НС и стентированием коронарных артерий, которые принимают стандартную антитромботическую терапию. Определение в клинической практике уровня эндогенного потенциала тромбина и/или уровня Д-димеров у пациентов с нестабильной стенокардией позволит проводить персонифицированную антитромботическую терапию у данной категории пациентов с дополнительным назначением ривароксабана 2,5 мг 2 раза в день или заменой клопидогрела на прасугрел или тикагрелор.

Источник финансирования и конфликт интересов отсутствуют.

- Straub N., Beivers A., Lenk E., Aradi D., Sibbing D. A model-based analysis of the clinical and economic impact of personalising P2Y12-receptor inhibition with platelet function testing in acute coronary syndrome patients. *Thromb Haemost*, 2014, vol. 111, no 2, pp. 290-299. doi: 10.1160/TH13-08-0679.
- Gelis L. G., Medvedeva E. A., Markova I. A., Russkix I. I., Kolyadko M. G. Klinicheskie posledstviya rezistentnosti k antitrombocitarny'm preparatam u licz, perenesshix nestabil' nuyu stenokardiyu (Clinical consequences of resistance to antitiplatelet drugs in people with unstable angina). Kardiologiya v Belarusi, 2015, no. 3(40), p. 78–88. (in Russian).
 Mills J. D., Mansfield M. W., Grant P. J. Tissue plasminogen activator, fibrin D-dimer, and
- Mills J.D., Mansfield M.W., Grant P.J. Tissue plasminogen activator, fibrin D-dimer, and insulin resistance in the relatives of patients with premature coronary artery disease. Arterioscler Thromb Vasc Biol, 2002, vol. 22, no. 4, pp. 704-709.
- Tataru M.C., Heinrich J., Junker R., Schulte H, von Eckardstein A., Assmann G., Koehler E. D-dimer in relation to the severity of arteriosclerosis in patients with stable angina pectoris after myocardial infarction. *Eur Heart J.*, 1999, vol. 20, no. 20, pp. 1493–1502. doi: 10.1053/euhj.1999.1519.
- Shmeleva V.M., Smirnova O.A., Matvienko O.Ju., Golovina O.G., Namestnikov Ju.A., Soldatenkov V.E., Saltykova N.B., Berezovskaja G.A., Papajan L.P. Novye laboratornye vozmozhnosti monitoringa protivotromboticheskoj terapii (New laboratory abilities in monitoring of antithrombotic treatment). *Transfuziologija*, 2014, vol. 15, no. 4, pp. 29-34. (in Russian).
- Bouwens E.A., Stavenuiter F., Mosnier L.O. Mechanisms of anticoagulant and cytoprotective actions of the protein C pathway. J Thromb Haemost, 2013, vol. 11, suppl. 1, pp. 242-253. doi: 10.1111/jth.12247.
- Berezovskaya G., Smirnova O., Malev E., Khromov-Borisov N., Klokova E., Karpenko M., Papayan L., Petrishchev N. Thrombin generation test for evaluation of antiplatelet treatment in patients with coronary artery disease after percutaneous coronary intervention. *Platelets*, 2018, vol. 29, no. 2, pp. 185–191. doi:10.1080/09537104.2017.1294680.
- 14. Berezovskaja G.A., Lazovskaja T.V., Klokova E.S., Karpenko M.A., Petrishhev N.N. Sposob prognozirovanija vozobnovlenija kliniki ishemicheskoj bolezni serdca s pomoshhfyi nejronnyh setej u pacientov posle jendovaskuljarnoj revaskuljarizacii (Method for predicting resumption of coronary heart disease clinical picture by means of neural networks in patients after endovascular intervention]. Patent RU no 2675067, 2018. (in Russian).
- Berezovskaja G.A., Klokova E.S. Intensivnost obrazovanija trombina i sokratitelnaja sposobnost miokarda u bolnyh ishemicheskoj boleznju serdca posle koronarnogo stentirovanija (Intensity of thrombin formation and myocardial contractility in patients with ischemic heart disease after coronary stenting). Regionarnoe krovoobrashhenie i mikrocirkuljacija, 2017, vol. 16, no. 2(62), pp. 63–69. (in Russian).

Поступила 12.04.2021

РИВАКСАН

(ривароксабан)-

ПЕРВЫЙ БЕЛОРУССКИЙ ПРЯМОЙ **Ж**ОРАЛЬНЫЙ АНТИКОАГУЛЯНТ

Простая и удобная
профилактика системной эмболии

AKAAEW

ЭФФЕКТИВНОСТЬ

- Эффективная защита от системной эмболии
- Защита с первого дня лечения

УДОБСТВО

- 1 таблетка 1 раз в сутки
- Не требует подбора дозы
- Не требует мониторинга свертывания крови, ограничений в диете

 Входит в перечень основных ЛС, отпускаемых по льготным рецептам

- Наличие в аптечных сетях
- Доступная цена

2,5 мг

для профилактики атеротромбоза у взрослых пациентов, перенесших острый коронарный синдром (ОКС) с повышением сердечных биомаркеров;
 для профилактики сердечно-сосудистых осложнений у взрослых пациентов с ишемической болезнью сердца (ИБС) или симптоматическим заболеванием периферических артерий (ЗПА) с высоким риском ишемических событий.

10 мг

• профилактика венозной тромбоэмболии (ВТЭ) у взрослых пациентов, перенесших ортопедические операции на коленном или тазобедренном суставах.

15 мг

20 мг

• профилактика инсульта и системной эмболии у взрослых пациентов с фибрилляцией предсердий неклапанного происхождения с одним или несколькими факторами риска, такими как застойная сердечная недостаточность, артериальная гипертензия, возраст > 75 лет, сахарный диабет, перенесенный инсульт или транзиторная ишемическая атака;
• лечение тромбоза глубоких вен (ТГВ) и тромбоэмболии легочной артерии (ТЭЛА),

и профилактика рецидива ТГВ и ТЭЛА у взрослых.

Произведено по стандартам GMP на базе Национальной академии наук Республики Беларусь Субстанция: Glenmark Life Sciences Limited, Индия

1. Manesh R.Patel and the ROCKET AF Steering Committee, Rivaroxaban versus Warfarin in Nonvalvular Atrial Fibrillation, N Engl J Med 2011;365:883-91

На правах рекламы. Лекарственное средство. Имеются противопоказания и побочные действия. Не должен применяться во время второго и третьего триместра беременности, за исключением случаев крайней необходимости.

Производитель: Государственное предприятие «АКАДЕМФАРМ», 220141, г. Минск, ул. академика В.Ф. Купревича, д. 5, корп.3, Республика Беларусь, тел./факс 8(017) 268-63-64 Для сообщения о нежелательных реакциях на сайте производителя http://academpharm.by представлена электронная форма обращения