О.С. Павлова, И.Ю. Коробко, М.М. Ливенцева, О.А. Барбук, И.И. Русских, М.Г. Колядко, А.М. Гарькавая, С.Э. Огурцова
Республиканский научно-практический центр «Кардиология» ,Институт биоорганической химии Национальной Академии наук Беларуси
Цель исследования заключалась в определении взаимосвязи генетического полиморфизма и компонентов ренин-ангиотензин-альдостероновой системы (РААС) с относительной длиной теломер (ДЛТ) лейкоцитов у лиц с нормальным или оптимальным артериальным давлением (АД).
ключевые слова: длина теломер лейкоцитов, ренин-ангиотензин-альдостероновая система, ангиотензин II, генетический полиморфизм, ген ангиотензиногена, ген ренина
для цитирования: О.С. Павлова, И.Ю. Коробко, М.М. Ливенцева, О.А. Барбук, И.И. Русских, М.Г. Колядко, А.М. Гарькавая, С.Э. Огурцова Патогенез клеточного старения: полиморфизм генов и активность ренин-ангиотензин-альдостероновой системы. Неотложная кардиология и кардиоваскулярные риски, 2020, Т. 4, № 1, С. 898–903
The pathogenesis of cell aging: gene polymorphism and renin-angiotensin-aldosterone system activity
O.S. Pavlova, I.Yu. Korobko, M.M. Liventseva, O.A. Barbuk, I.I. Russkikh, M.G. Kaliadka, A.M. Gorkavaya, S.E. Ogurtsova
The aim of the study was to determine the correlation of genetic polymorphism and renin-angiotensin-aldosterone system (RAAS) components with the relative leukocyte telomere length (TL) in individuals with normal or optimal blood pressure.
keywords: leukocyte telomere length, renin-angiotensin-aldosterone system, angiotensin II, genetic polymorphism, angiotensinogen gene, renin gene
for references: O.S. Pavlova, I.Yu. Korobko, M.M. Liventseva, O.A. Barbuk, I.I. Russkikh, M.G. Kaliadka, A.M. Gorkavaya, S.E. Ogurtsova. The pathogenesis of cell aging: gene polymorphism and renin-angiotensin-aldosterone system activity. Neotlozhnaya kardiologiya i kardiovaskulyarnye riski [Emergency cardiology and cardiovascular risks], 2020, vol. 4, no. 1, pp. 898–903
1. Yeh J.K., Wang C.Y. Telomeres and Telomerase in Cardiovascular Disease. Genes (Basel), 2016, vol. 7, no. 9, pp. 7-58.
2. Madrid A.S., Rode L., Nordestgaard B.G., Bojesen S.E. Short telomere length and ischemic heart disease: Observational and genetic studies in 290 022 individuals. Clin. Chem, 2016, vol. 62, no. 8, pp. 1140-1149. doi: 10.1373/clinchem.2016.258566.
3. Xu C., Wang Z., Su X., Da M., Yang Z., Duan W., Mo X. Association between leucocyte telomere length and cardiovascular disease in a large general population in the United States. Sci Rep, 2020, vol.10, no.1, 80p. doi: 10.1038/s41598-019-57050-1.
4. Tian Y., Wang S., Jiao F., Kong Q., Liu C., Wu Y. Telomere Length: A Potential Biomarker for the Risk and Prognosis of Stroke. Front Neurol, 2019, no. 10, pp. 624. doi: 10.3389/fneur.2019.00624.
5. Muñoz-Durango N., Fuentes C.A., Castillo A.E., Luis Martín González-Gómez L.M., Vecchiola A., Fardella C.E., Kalergis A.M. Role of the Renin-Angiotensin-Aldosterone System beyond Blood Pressure Regulation: Molecular and Cellular Mechanisms Involved in End-Organ Damage during Arterial Hypertension. Int J Mol Sci, 2016, vol. 17, no. 7, pp. 797. doi: 10.3390/ijms17070797.
6. Vasan R.S., Demissie S., Kimura M., Cupples L.A., White C, Gardner JP, Cao X, Levy D, Benjamin EJ, Aviv A. Association of leukocyte telomere length with echocardiographic left ventricular mass: the Framingham heart study. Circulation, 2009, vol. 120, no. 13, pp. 1195-1202.
7. Benetos A., Gardner J.P., Kimura M., Labat C., Nzietchueng R., Dousset B., Zannad F., Lacolley P., Aviv A. Aldosterone and telomere length in white blood cells. J Gerontol A Biol Sci Med Sci, 2005, vol. 60, no. 12, pp. 1593-1596.
8. Nilsson P.M., Tufvesson H., Leosdottir M., Melander O. Telomeres and cardiovascular disease risk: an update 2013. Transl Res, 2013, vol. 162, no. 6, pp. 371-380. doi: 10.1016/j.trsl.2013.05.004.
9. Fyhrquist F., Silventoinen K., Saijonmaa O., Kontula K., Devereux R.B., de Faire U., Os I., Dahlöf B. Telomere length and cardiovascular risk in hypertensive patients with left ventricular hypertrophy: the LIFE study. J Hum Hypertens, 2011, vol. 25, no. 12, pp. 711-718. doi: 10.1038/jhh.2011.57.
10. Jeunemaitre X., Soubrier F., Kotelevtsev Y.V., Williams C.S., Charru A.S, Hunt C., Hopkins P.N., Williams R.R., Lalouel J.M. Molecular basis of human hypertension: role of angiotensinogen. Cell, 1992, vol. 71, no. 1, pp. 169-180.
11. Sethi A.A., Nordestgaard B.G., Tybjaerg-Hansen A. Angiotensinogen gene polymorphism, plasma angiotensinogen, and risk of hypertension and ischemic heart disease: a meta-analysis. Arterioscler Thromb Vasc Biol, 2003, vol. 23, no. 7, pp. 1269-1275. doi: 10.1161/01.ATV.0000079007.40884.5C.
12. Konoshita T. Do genetic variants of the Renin-Angiotensin system predict blood pressure response to Renin-Angiotensin system-blocking drugs? A systematic review of pharmacogenomics in the Renin-Angiotensin system. Curr Hypertens Rep, 2011, vol. 13, no. 5, pp. 356-361.
13. Pychtina V.S., Strazhesko I.D., Agal’zov M.V., Tkacheva O.N. Penin-angiotenzin-al’dosteronovaya sistema i replikativnoe kletochnoe starenie: ich vzaimodeystvie v chode stareniya sosudov [Renin-angiotensin-aldosterone system and replicative cellular senescence: their interaction during the vascular ageing]. Razional’naya Farmakoterapiya v Kardiologii, 2014, vol. 10, no. 3, pp. 312-316. (in Russian).