О.В. Панасюк, Э.В. Могилевец, А.В. Наумов
Гродненский государственный медицинский университет
Гомоцистеин является цито- и нейротоксичной аминокислотой. Повышение его уровня в плазме крови называется гипергомоцистеинемией. Данное патологическое состояние способствует развитию и прогрессирующему течению сердечно-сосудистых заболеваний. Утилизация гомоцистеина заключается в его транссульфурировании в цистеин, или реметилировании в метионин. Повышенное поступление в организм холина и его метаболита (бетаина) ведёт к усилению процессов реметилирования и уменьшению уровня гомоцистеина в плазме крови. Следовательно, холин и бетаин могут рассматриваться в качестве веществ, способных воздействовать на гипергомоцистеинемию, и снижать развитие сердечно-сосудистых заболеваний.
ключевые слова: гомоцистеин, гипергомоцистеинемия, холин, бетаин, атеросклероз, сердечно-сосудистые заболевания

для цитирования: О.В. Панасюк, Э.В. Могилевец, А.В. Наумов. Возможности холина и его метаболита в коррекции гипергомоцистеинемии и снижении развития сердечно-сосудистой патологии. Неотложная кардиология и кардиоваскулярные риски, 2020, Т. 4, № 1, С. 904–908

Cholin and its metabolite feasibilities in hyperhomocysteinemia correction and cardiovascular pathology decrease
O.V. Panasiuk, E.V. Mogilevets, А.V. Naumov
Homocysteine is a cyto- and neurotoxic amino acid. The raise of its level in blood plasma is called hyperhomocysteinemia. This pathological state leads to the development and progressive course of cardiovascular diseases. Homocysteine utilization involves its transulfurization to cysteine or remethylation to methionine. Choline and its metabolite (betaine) increased intake leads to enhanced processes of remethylation and decreased homocysteine level in blood plasma. Thus, choline and betaine may be considered as substances capable of influencing hyperhomo-cysteinemia and lowering the level of cardiovascular disease development.
keywords: homocysteine, hyperhomocysteinemia, choline, betaine, atherosclerosis, cardiovascular diseases

for references: O.V. Panasiuk, E.V. Mogilevets, А.V. Naumov. Cholin and its metabolite feasibilities in hyperhomocysteinemia correction and cardiovascular pathology decrease. Neotlozhnaya kardiologiya i kardiovaskulyarnye riski [Emergency cardiology and cardiovascular risks], 2020, vol. 4, no. 1, pp. 904–908

1. Naghavi M., Wang H., Lozano R. Global, regional and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study. Lancet, 2015, vol. 385, no. 9963, pp. 117-171.
2. Townsend N., Wilson L., Bhatnagar P. Cardiovascular disease in Europe: epidemiological update. Eur Heart J, 2016, vol. 37, no. 42, pp. 3232-3245.
3. Naumov A.V. Gomocistein. Mediko-biologicheskie problemy’ [Homocysteine. Medical and biological problems]. Minsk : Profes. izd, 2013. 312 s. (in Russian).
4. Snejickiy, V.A., Py’rochkin V.M., Spas V.V., Doroshenko E.M., Egorova T.YU., Mironchik E.V., Naumov A.V., YAkubcevich R.E`., Zuhovickaya E.V., Plockiy A.R., YAnushko T.V., Volod’ko YU.S., Picko D.V., Predko V. A., Deshko M.S. Klinicheskie aspekty’ gipergo-mocisteinemii [Clinical aspects of hyperhomocysteinemia] : monogr. / pod obsch’. red. V. A. Snejickogo, V. M. Py’rochkina. Grodno : GrGMU, 2011, 290 s. (in Russian).
5. Naumov A.V. Rol’ narusheniy processov metilirovaniya i obmena metionina v patogeneze zabolevaniy cheloveka [The role of violations of methylation and methionine metabolism in the pathogenesis of human diseases]. Jurnal GrGMU, 2007, no. 1, S. 4-7. (in Russian).
6. Naumov A.V., Danil’chik I.V., Sarana YU.V. Tri puti remetilirovaniya gomocisteina [Three homocysteine remethylation pathways]. Jurnal GrGMU, 2016, no. 2, s. 27-32. (in Russian).
7. Wortmann S.B., Mayr J.A. Choline-related-inherited metabolic diseases - A mini review. J Inherit Metab Dis, 2019, vol. 42, no. 2, pp. 237-242.
8. Zeisel S.H., Mar M.H., Howe J.C., Holden J.M. Concentrations of choline-containing compounds and betaine in common foods. J Nutr, 2003, vol. 133, no. 5, pp. 1302-1307.
9. Yates A.A., Schlicker S.A., Suitor C.W. Dietary reference intakes: the new basis for recommendations for calcium and related nutrients, B vitamins, and choline. J Am Diet Assoc, 1998, vol. 98, no. 6, pp. 699-706.
10. Fischer L.M., da Costa K.A., Kwock L., Stewart P.W., Lu T.S., Stabler S.P., Allen R.H., Zeisel S.H. Sex and menopausal status influence human dietary requirements for the nutrient choline. Am J Clin Nutr, 2007, vol. 85, no. 5, pp. 1275-1285.
11. Shaw G.M., Finnell R.H., Blom H.J., Carmichael S.L., Vollset S.E., Yang W., Ueland P.M. Choline and risk of neural tube defects in a folate-fortified population. Epidemiology, 2009, vol. 20, no. 5, pp. 714-719.
12. Li Z., Vance D.E. Phosphatidylcholine and choline homeostasis. J Lipid Res, 2008, vol. 49, no. 6, pp. 1187-1194.
13. Jacobs, R.L., Stead, L.M., Devlin C., Tabas I., Brosnan M.E., Brosnan J.T., Vance D.E. Physiological regulation of phospholipid methylation alters plasma homocysteine in mice. J Biol Chem, 2005, vol. 280, no. 31, pp. 28299-28305.
14. Da Costa, K.A., Kozyreva O.G., Song J. Galanko J.A., Fischer L.M., Zeisel S.H. Common genetic polymorphisms affect the human requirement for the nutrient choline. FASEB J, 2006, vol. 20, no. 9, pp. 1336-1344.
15. Johnson, A.R., Craciunescu C.N., Guo Z., Teng Y.W., Thresher R.J., Blusztajn J.K., Zeisel S.H. Deletion of murine choline dehydrogenase results in diminished sperm motility. FASEB J, 2010, vol. 24, no. 8, pp. 2752-27 61.
16. Drapkina O.M., Kaburova A.N. Kishechnaya mikrobiota - novy’y sputnik na marshrute serdechno-sosudisty’h zabolevaniy: neojidanny’e roli stary’h sosedey [Intestinal microbiota-a new satellite on the route of cardiovascular diseases: unexpected roles of old neighbors]. Racional’naya farmakoterapiya v kardiologii, 2016, vol. 12, no. 1, S. 66-71. (in Russian).
17. Griffin J.L . , Wang X., Stanley E. Does our gut microbiome predict cardiovascular risk? A review of the evidence from metabolomics. Circ. Cardiovasc. Genet, 2015, vol. 8, no. 1, pp. 187-191.
18. Wang D., Xia M., Yan X. Li D., Wang L., Xu Y., Jin T., Ling W. Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b. Circ Res, 2012, vol. 111, no. 8, pp. 967-981.
19. Meyer K.A., Benton T.Z., Bennett B.J., Jacobs D.R.Jr., Lloyd-Jones D.M., Gross M.D., Carr J.J., Gordon-Larsen P., Zeisel S.H. Microbiota-dependent metabolite trimethylamine N-oxide and coronary artery calcium in the coronary artery risk development in young adults study (CARDIA). J Am Heart Assoc, 2016, vol. 5, no. 10, pp. e003970.
20. Michurova M.S., Kalashnikov V.YU., Smirnova O.M., Kononenko I.V., Ivanova O.N. Rol’ e`ndotelial’ny’h progenitorny’h kletok v razvitii oslojneniy saharnogo diabeta [The role of endothelial progenitor cells in the development of diabetes complications]. Saharny’y diabet, 2015, no. 1, S. 24-32. (in Russian).
21. Nozadze D.N., Rvache’va A.V., Kaznacheeva E.I., Sergienko I.V. Monocity’ v razvitii i destabilizacii ateroskleroticheskoy blyashki [Monocytes in the development and destabilization of atherosclerotic plaque]. Ateroskleroz i dislipidemii, 2012, vol. 8, no. 3, s. 25-36. (in Russian).
22. Liao, D., Tan H., Hui R., Li Z., Jiang X., Gaubatz J., Yang F., Durante W., Chan L., Schafer A.I., Pownall H.J., Yang X., Wang H. Hyperhomocysteinemia decreases circulating highdensity lipoprotein by inhibiting apolipoprotein A-I Protein synthesis and enhancing HDL cholesterol clearance. Circ Res, 2006, vol. 99, no. 6, pp. 598-606.
23. Naumov A.V., Grinevich T.N., Naydina V.M. Gomocistein v patogeneze mikrocirkulyatorny’h i tromboticheskih oslojneniy [Homocysteine in the pathogenesis of microcirculatory and thrombotic complications]. Tromboz, gemostaz i reologiya, 2012, vol. 49, no. 1, s. 9-19. (in Russian).
24. Panasyuk, O.V., Mogilevec E`.V., Goryachev P.A., Vasil’chuk L.F., Budrevich O.V. Rannie oslojneniya posle revaskulyariziruyusch’ih vmeshatel’stv na arteriyah nijnih konechnostey u pacientov s obliteriruyusch’im aterosklerozom [Early complications after revascularizing interventions on lower limb arteries in patients with obliterating atherosclerosis] [elec tronic resource]. K 10 0 -letiyu belorusskogo zdravoohraneniya i 75-letiyu zdravoohraneniya Grodnenskoy oblasti : sb. st. / M-vo zdravoohraneniya Resp. Belarus’, UO “Grodnenskiy gosudarstvenny’y medicinskiy universitet” ; red. kol.: V.A. Snejickiy, M.YU. Surmach [i dr.], Grodno, 2019, S. 159-163, 1 e`lektron. opt. disk. (in Russian).
25. Setoue M., Ohuchi S., Morita T. Sugiyama K. Choline deprivation induces hyperhomocysteinemia in rats fed low methionine diets. J Nutr Sci Vitaminol, 2008, vol. 54, no. 6, pp. 483-490.
26. Da Costa, K.A., Gaffney C.E., Fischer L.M., Zeisel S.H. Choline deficiency in mice and humans is associated with increased plasma homocysteine concentration after a methionine load. Am J Clin Nutr, 2005, vol. 81, no. 2, pp. 440 - 444.
27. Atkinson, W., Slow S., Elmslie J. Lever M., Chambers S.T., George P.M. Dietary and supplementary betaine: effects on betaine and homocysteine concentrations in males. Nutr Metab Cardiovasc Dis, 2009, vol. 19, no. 11, P. 767-773.
28. Chiuve, S.E., Giovannucci E.L., Hankinson S.E. Zeisel S.H., Dougherty L.W., Willett W.C., Rimm E.B. The association between betaine and choline intakes and the plasma concentrations of homocysteine in women. Am J Clin Nutr, 2007, vol. 86, no. 4, pp. 1073-1081.
29. Rajdl D., Racek J., Trefil L. Stehlik P., Dobra J., Babuska V. Effect of folic acid, betaine, vitamin B 6 , and vitamin B 12 on homocysteine and dimethylglycine levels in middle-aged men drinking white wine. Nutrients, 2016, vol. 8, no. 1, pp. E34.
30. Bidulescu, A. Chambless L.E., Siega-Riz A.M. Zeisel S.H., Heiss G. Repeatability and measurement error in the assessment of choline and betaine dietary intake: the Atherosclerosis Risk in Communities (ARIC) study. Nutr J, 2009, no. 8, pp. 14-21.
31. Millard H.R., Musani S.K., Dibaba D.T. Talegawkar S.A., Taylor H.A., Tucker K.L., Bidulescu A. Dietary choline and betaine: associations with subclinical markers of cardiovascular disease risk and incidence of CVD, coronary heart disease and stroke: the Jackson Heart Study. Eur. J. Nutr, 2018, vol. 57, no. 1, pp. 51-60.
32. Rajaie S., Esmaillzadeh A. Dietary choline and betaine intakes and risk of cardiovascular diseases: review of epidemiological evidence ARYA. Atheroscler J, 2011, vol. 7, no. 2, pp. 78-86.
33. Meyer K.A., Shea J.W. Dietary Choline and betaine and risk of CVD: a systematic review and meta-analysis of prospective studies. Nutrients, 2017, vol. 9, no. 7, pp. E711.
34. Bertoia, M.L., Pai J.K., Cooke J.P. Joosten M.M., Mittleman M.A., Rimm E.B., Mukamal K.J. Plasma homocysteine, dietary B vitamins, betaine, and choline and risk of peripheral artery disease. Atherosclerosis, 2014, vol. 235, no. 1, pp. 94-101.
35. Detopoulou, P., Panagiotakos D.B., Antonopoulou S., Pitsavos C., Stefanadis C. Dietary choline and betaine intakes in relation to concentrations of inflammatory markers in healthy adults: the ATTICA study. Am J Clin Nutr, 2008, vol. 87, no. 2, pp. 424-430.
36. Lv S., Fan R., Du Y., Hou M., Tang Z., Ling W., Zhu H. Betaine supplementation attenuates atherosclerotic lesion in apolipoprotein E-deficient mice. Eur J Nutr, vol. 48, no. 4, pp. 205-212.
37. Lever M., George P.M., Atkinson W., Molyneux S.L., Elmslie J.L., Slow S., Richards A.M., Chambers S.T. Plasma lipids and betaine are related in an acute coronary syndrome cohort. PLoS One, 2011, vol. 6, no. 7, pp. e21666.
38. Roe A. J., Zhang S., Bhadelia R.A. Johnson E.J., Lichtenstein A.H., Rogers G.T., Rosenberg I.H., Smith C.E., Zeisel S.H., Scott T.M.. Choline and its metabolites are differently associated with cardiometabolic risk factors, history of cardiovascular disease, and MRI-documented cerebrovascular disease in older adults. Am J Clin Nutr, 2017, vol. 105, no. 6, pp. 1283-1290.
39. Bondarenko V.A., Minuhin A.S., Lucenko A.G., Kononenko N.N. Opy’t primeneniya L-arginina v komplekse s betainom pri lechenii e`rektil’noy disfunkcii [Experience in using L-arginine in combination with betaine in the treatment of erectile dysfunction]. Norweg J developm Int Sci, 2017, no. 7, S. 35–40. (in Russian).
40. Rasulova H.A. Vliyanie holina al’foscerat na markery’ e`ndotelial’noy disfunkcii i holine`rgicheskoy transmissii pri razlichny’h podtipah ishemicheskogo insul’ta [Effect of choline alfoscerate on markers of endothelial dysfunction and cholinergic transmission in various subtypes of ischemic stroke]. Vestnik KazNMU, 2015, no. 2, s. 446-449. (in Russian).
Формат файла: pdf (347.59 Кб)