Э.В. Давыдчик, В.А. Снежицкий, Т.Л. Степуро, Е.М. Дорошенко, В.Ю. Смирнов
УО «Гродненский государственный медицинский университет», ГП «Институт биохимии биологически активных соединений НАН Беларуси», Гродно
Цель исследования. Изучить уровень гомоцистеина (Нсу), распределение частот генотипов и аллелей полиморфных вариантов С677Т, А1298С гена метилентетрагидрофолатредуктазы (MTHFR), A66G гена метионинсинтазы-редуктазы (MTRR), А2756G гена метионинсинтазы (MTR) у пациентов с хронической ишемической болезнью сердца (ИБС) в сочетании с сахарным диабетом (СД) 2 типа.
ключевые слова: ишемическая болезнь сердца, сахарный диабет 2 типа, гомоцистеин, полиморфные варианты С677Т, А1298С гена метилентетрагидрофолатредуктазы, А66G гена метионинсинтазы-редуктазы, А2756G гена метионинсинтазы

для цитирования: Э.В. Давыдчик, В.А. Снежицкий, Т.Л. Степуро, Е.М. Дорошенко, В.Ю. Смирнов. Уровень гомоцистеина и полиморфизмы генов фолатного обмена у пациентов с ишемической болезнью сердца и сахарным диабетом 2 типа. Неотложная кардиология и кардиооваскулярные риски,2019, Т. 3, № 2, С. 690–696

The level of homocysteine and polymorphisms of genes of folate exchange in patients with coronary heart disease and diabetes mellitus type 2
E.V. Davydchyk, V.A. Snezhitskiy, T.L. Stepuro, E.M. Doroshenko, V.Yu. Smirnov
The aim of the study is to investigate the level of homocysteine (Hcy), distribution of frequencies of alleles and genotypes of polymorphic options С677Т, А1298С of gene MTHFR, A66G of gene MTRR, А2756G of gene MTR in patients with chronic coronary heart disease (CHD) in combination with diabetes mellitus (DM) type 2.
keywords: coronary heart disease, diabetes mellitus type 2, homocysteine, polymorphic options С677Т, А1298С of gene MTHFR, A66G of gene MTRR, А2756G of gene MTR

for references: E.V. Davydchyk, V.A. Snezhitskiy, T.L. Stepuro, E.M. Doroshenko, V.Yu. Smirnov. The level of homocysteine and polymorphisms of genes of folate exchange in patients with coronary heart disease and diabetes mellitus type 2. Neotlozhnaya kardiologiya i kardioovaskulyarnye riski [Emergency cardiology and cardiovascular risks], 2019, vol. 3, no. 2, pp. 690–696

1. Snezhizkiy V.A., Pyrochkin A.V., Spas V.V., Doroshenko E.M., Egorova T.Yu., Mironchik EV., Naumov A.V., Yakubzevich R.E., Zuchovizkaya E.V., Plozkiy A.R., Yanushko T.V., Volod’ko Yu.S. Pizko D.V., Predko V.A., Deshko M.S. Klinicheskie aspekti gipergomotsisteinemii [Clinical aspects of hyperhomocysteinemia]. Grodno: GSMU, 2011, 291 р. (in Russian).
2. Davydchyk E.V., Snezhitskiy V.A., Nikonova L.V. Vzaimosvjaz gipergomocisteinemiis ishemicheskoj boleznju serdca i saharnym diabetom [Relationship of hyperhomocysteinemia with coronary heart disease and diabetes mellitus]. Zhurnal Grodnenskogo gosudarstvennogo medicinskogo universiteta, 2015, № 1, pp. 9–13. (in Russian).
3. Burdennii A.M., Loginov V.I., Zavarikina T.M., Braga E.A., Kubatiev A.A. Molekulyarno-geneticheskie narusheniya genov folatnogo i gomotsisteinovogo obmena v patogeneze ryada mnogofaktornih zabolevanii [Molecular genetic disorders of folate and homocysteine metabolism in the pathogenesis of several multifactor diseases]. Genetika, 2017, vol. 53, № 5, pp. 526–540. (in Russian).
4. Doroshenko E.M., Snezhitskiy V.A., Lelevich V.V. Struktura pula svobodnih aminokislot i ih proizvodnih plazmi krovi u patsientov s ishemicheskoi bolezn’yu serdtsa i proyavleniyami hronicheskoi serdechnoi nedostatochnosti [The structure of the pool of free amino acids and their derivatives of blood plasma in patients with ischemic heart disease and manifestations of chronic heart failure]. Zhurnal Grodnenskogo gosudarstvennogo medicinskogo universiteta, 2017, vol. 15, № 5, pp. 551–556. (in Russian).
5. Song Y., Cook N.R., Alber t C.M., Van Denburgh M., Manson J.E. Effect of homocysteine-lowering treatment with folic acid and B vitamins on risk of type 2 diabetes in women. Diabetes, 2009, vol. 58, pp. 1921–1928.
6. Fonseca V., Dicker-Brown A., Ranganathan S., Song W., Barnard R.J., Fink L., Kern P.A. Effects of a high-fat-sucrose diet on enzymes in homocysteine metabolism in the rat. Metabolism, 2000, vol. 49, pp. 736–741.
7. Ramkaran P., Phulukdaree A., Khan S., Moodley D., Chuturgoon A.A. Methylenetetrahydrofolate reductase C677T polymorphism is associated with increased risk of coronary artery disease in young South African Indians. Gene, 2015, vol. 571, № 1, pp. 28–32.
8. Chen W., Hua K., Gu H., Zhang J., Wang L. Methylenetetrahydrofolate reductase C667T polymorphism is associated with increased risk of coronary artery disease in a Chinese population. Scand J Immunol, 2014, vol. 80, pp. 346–353.
9. Gariglio L., Riviere S., Morales A., Porcile R., Potenzoni M., Fridman O. Comparison of homocysteinemia and MTHFR 677CT polymorphism with Framingham Coronary Heart Risk Score. Arch Cardiol Mex, 2014, vol. 84, № 2, pp. 71–78.
10. Whayne T.F. Methylenetetrahydrofolate reductase C667T polymorphism, venous thrombosis, cardiovascular risk, and other effects. Angiology, 2015, vol. 66, № 5, pp. 401–404.
11. Mager A., Battler A., Birnbaum Y. Plasma homocysteine, methylenetetrahydrofolate reductase genotype, and age at onset of symptoms of myocardial ischemia. Atherosclerosis, 2002, vol. 89, № 8, pp. 919–923.
12. Sadewa A.H., Sunarti, Sutomo R., Hayashi C., Lee M.J., Ayaki H., Sofro A.S., Matsuo M., Nishio H. The C677T mutation in the methylenetetrahydrofolate reductase gene among the Indonesian Javanese population. Kobe J Med Sci, 2002, vol. 48, № 5, pp. 137–144.
13. 1Klerk M., Verhoef P., Clarke R., Blom H.J., Kok F.J., Schouten E.G. MTHFR 677C→T polymorphism and risk of coronary heart disease: a metaanalysis. JAMA, 2002, vol. 288, pp. 2023–2031.
14. Nakai K., Itoh C., Nakai K., Habano W., Gurwitz D. Correlation between C677T MTHFR gene polymorphism, plasma homocysteine levels and the incidence of CAD. Am J Cardiovasc Drugs, 2001, vol. 1, № 5, pp. 353–361.
15. Stover P.J. Polymorphisms in 1-carbon metabolism, epigenetics and folate-related pathologies. J Nutrigenet Nutrigenomics, 2011, vol. 4, № 5, pp. 293–305.
16. Marini D.N., Gin J., Ziegle J., Keho K.H., Ginzinger D., Gilbert D.A., Rine J. The prevalence of folate-remedial MTHFR enzyme variants in humans. Proc Natl Acad Sci USA, 2008, vol. 105, № 23, pp. 8055–8060.
17. Callejon J., Mayor-Olea A., Jimenez A.J., Gaitan M.J., Palomares A.R., Martinez F., Ruiz M., Reyes-Engel A. Genotypes of the C677T and A1298C polymorphisms of the MTHFR gene as a cause of human spontaneous embryo loss. Hum Reprod, 2007, vol. 22, pp. 3249–3254.
18. Poduri A., Mukherjee D., Sud K., Kohli H.S., Sakhuja V., Khullar M. MTHFR A1298C polymorphism is associated with cardiovascular risk in end stage renal disease in North Indians. Mol Cell Biochem, 2008, vol. 308, № 1-2, pp. 43–50.
19. Fung M.M., Salem R.M., Lipkowitz M.S., Bhatnagar V., Pandey B., Schork N.J., O’Connor D.T. Methylenetetrahydrofolate reductase (MTHFR) polymorphism A1298C (Glu429Ala) predicts decline in renal function over time in the African-American study of kidney disease and hypertension (AASK) trial and Veterans Af fairs Hypertension Cohort (VAHC). Nephrol Dial Transplan, 2011, vol. 10, pp. 1–9.
20. Kolling K., Ndrepepa G., Koch W., Braun S., Mehilli J., Schömig A., Kastrati A. Methylenetetrahydrofolate reductase gene C677T and A1298C polymorphisms, plasma homocysteine, folate, and vitamin B12 levels and the extent of coronary artery disease. Am J Cardiol, 2004, vol. 93, pp. 1201–1206.
21. Hobbs C.A., Sherman S.L., Yi P., Hopkins S.E., Torfs C.P., Hine R.J., Pogribna M., Rozen R., James S.J. Polymorphisms in genes involved in folate metabolism as maternal risk factors for Down syndrome. Am J Hum Genet, 2000, vol. 67, pp. 623–630.
22. Rai V., Yadav U., Kumar P., Yadav S.K. Analysis of methionine synthase reductase polymorphism (A66G) in Indian Muslim population. Indian J Hum Genet, 2013, vol. 19, № 2, pp. 183–187.
23. Gueant-Rodriguez R.M., Juilliere Y., Candito M., Adjalla C.E., Gibelin P., Herbeth B., Van Obberghen E., Gueánt J.L. Association of MTRR A66G polymorphism (but not of MTHFR C677T and A1298C, MTR A2756G, TCN C776G) with homocysteine and coronary artery disease in the French population. Thromb Haemost, 2005, vol. 94, pp. 510–515.
24. Pangilinan F.I., Molloy A.M., Mills J.L., Troendle J.F., Parle-McDermott A., Signore C., O’Leary V.B., Chines P., Seay J.M., Geiler-Samerotte K. Evaluation of common genetic variants in 82 candidate genes as a risk factors for neural tube defects. BMS Med Genet, 2012, vol. 13, pp. 62–69.
25. Chen L., Liu L., Hong K. Three genetic polymorphisms of homoc ysteine-metabolizing enzymes and risk of coronary heart disease: a meta-analysis based on 23 case-control studies. DNA Cell Biol, 2012, vol. 31, № 2, pp. 238–249.
Формат файла: pdf (952.55 Кб)