Н.Н. Щетинко, С.В. Спиридонов, В.О. Одинцов, Е.С. Смирнова, О.А. Юдина, Ю.П. Островский
ГУ «Республиканский научно-практический центр «Кардиология», Минск, УО «Белорусский государственный медицинский университет», УЗ «Городское клиническое патологоанатомическое бюро», Минск
В статье отражена сравнительная оценка накопления кальция в стандартных и девитализированных аллографтах у животных, динамика накопления кальция в стандартных аортальных аллографтах у человека.
ключевые слова: кальций, аллографт, тканевая инженерия

для цитирования: Н.Н. Щетинко, С.В. Спиридонов, В.О. Одинцов, Е.С. Смирнова, О.А. Юдина, Ю.П. Островский. Накопление соединений кальция в аллографтах in vivo. Неотложная кардиология и кардиооваскулярные риски, 2019, Т. 3, № 1, С. 546–552

In vivo calcium compounds accumulation in allografts
M.M. Shchatsinka, S.V. Spirydonau, V.A. Adzintsou, A.S. Smirnova, О.А. Yudina, Y.P. Ostrovsky
To assess calcium deposition in standard and decellularized aortic allografts in animals, to evaluate calcium accumulation dynamics in standard aortic allografts in humans.
keywords: calcium, allograft, tissue engineering

for references: M.M. Shchatsinka, S.V. Spirydonau, V.A. Adzintsou, A.S. Smirnova, О.А. Yudina, Y.P. Ostrovsky. In vivo calcium compounds accumulation in allografts. Neotlozhnaya kardiologiya i kardioovaskulyarnye riski [Emergency cardiology and cardiovascular risks], 2019, vol. 3, no. 1, pp. 546–552

1. Murray G. Homologous aortic-valve-segment transplants as surgical treatment for aortic and mitral insufficiency. Angiology, 1956, vol. 7, no. 5, pp. 466–471.
2. Kowert A., Vogt F., Beiras-Fernandez A., Reichart B., Kilian E. Outcome after homograft redo operation in aortic position. Eur J Cardiothorac Surg. 2012, vol. 41, no. 2, pp. 404–408. doi: 10.1016/j.ejcts.2011.04.043.
3. Bekkers J.A., Klieverik L.M., Raap G.B., Takkenberg J.J., Bogers A.J. Re-operations for aortic allograft root failure: experience from a 21-year single-center prospective followup study. Eur J Cardiothorac Surg, 2011, vol. 40, no. 1, pp. 35–42. doi: 10.1016/j. ejcts.2010.11.025.
4. Yuan S.M., Mishaly D., Shinfeld A., Raanani E. Right ventricular outf low tract reconstruction: valved conduit of choice and clinical outcomes. J Cardiovasc Med (Hagerstown), 2008, vol. 9, no. 4, pp. 327–337. doi: 10.2459/JCM.0b013e32821626ce.
5. Brock L. Long-term degenerative changes in aortic segment homografts, with particular reference to calcification. Thorax, 1968, vol. 23, no. 3, pp. 249–255.
6. Sacks M.S., Schoen F.J. Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. J Biomed Mater Res, 2002, vol. 62, no. 3, pp. 359–371.
7. Schoen F.J., Levy R.J. Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg, 2005, vol. 79, no. 3, pp. 1072–1080.
8. Giachelli C.M. The emerging role of phosphate in vascular calcification. Kidney Int, 2009, vol. 75, no. 9, pp. 890–897. doi: 10.1038/ki.2008.644.
9. Smedira N.G., Blackstone E.H., Roselli E.E., Laffey C.C., Cosgrove D.M. Are allografts the biologic valve of choice for aortic valve replacement in nonelderly patients? Comparison of explantation for structural valve deterioration of allograft and pericardial prostheses. J Thorac Cardiovasc Surg, 2006, vol. 131, no. 3, pp. 558–564.e4.
10. Mohammadi S., Belli E., Martinovic I., Houyel L., Capderou A., Petit J., Planché C., Serraf A. Surgery for right ventricle to pulmonary artery conduit obstruction: risk factors for futher reoperation. Eur J Cardiothorac Surg, 2005, vol. 28, no. 2, pp. 217–222.
11. Smith J.D., Hornick P.I., Rasmi N., Rose M.L., Yacoub M.H. Effect of HLA mismatching and antibody status on homovital aortic valve homograft performance. Ann Thorac Surg, 1988, vol. 66, suppl 6, pp. 212–215.
12. Hawkins J.A., Breinholt J.P., Lambert L.M., Fuller T.C., Profai-zer T., McGough E.C., Shaddy R.E. Class I and class II anti-hla antibodies after implantation of cryopreserved allograft material in pediatric patients. J Thorac Cardiovasc Surg, 2000, vol. 119, no. 2, pp. 324–330.
13. Pompilio G., Polvani G., Piccolo G., Guarino A., Nocco A., Innocente A., Porqueddu M., Dainese L., Veglia F., Sala A., Biglioli P. Six-year monitoring of the donor-specific immune response to cryopreserved aortic allograft valves: implications with valve dysfunction. Ann Thorac Surg, 2004, vol. 78, no. 2, pp. 557–563.
14. Smith J.D., Ogino H., Hunt D., Laylor R.M., Rose M.L., Yacoub M.H. Humoral immune response to human aortic valve homografts. Ann Thorac Surg, 1995, vol. 60, suppl 2, pp. 127–130.
15. Hoekstra H. Knoop C., Vaessen L., Wassenaar C., Jutte N., Bos E., Bogers A., Weimar W. Donor-specific cellular immune response against human cardiac valve allografts. J Thorac Cardiovasc Surg, 1996, vol. 112, no. 2, pp. 281–286.
16. Numata S., Fujisato T., Niwaya K., Ishibashi-Ueda H., Nakatani T., Kitamura S. Immunological and histological evaluation of decellularized allograft in a pig model: comparison with cryopreserved allograf t. J Heart Valve Dis, 2004, vol. 13, no. 6, pp. 984–990.
17. Christenson J.T., Vala D., Sierra J., Beghetti M., Kalangos A. Blood group incompatibility and accelerated homograft fibrocalcifications. J Thorac Cardiovasc Surg, 2004, vol. 127, no. 1, pp. 242–250.
18. Shaddy R.E., Tani L.Y., Sturtevant J.E., Lambert L.M., McGough E.C. Effects of homograft blood type and anatomic type on stenosis, regurgitation and calcium in homografts in the pulmonary position. Am J Cardiol, 1992, vol. 70, no. 3, pp. 392–393.
19. Narine K., Ing E.C., Cornelissen M., Desomer F., Beele H., Vanlangenhove L., Smet S.D., Nooten G.V. Readily available porcine aortic valve matrices for use in tissue valve engineering. Is cr yopreser vation an option? Cryobiology, 2006, vol. 53, no. 2, pp. 169–181.
20. Chang Q., Jing H., Sun M., Xu P. Exploring the role of short-course cyclosporin a therapy in preventing homograft valve calcification after transplantation. Cell Immunol, 2014, vol. 287, no. 1, pp. 36–45. doi: 10.1016/j.cellimm.2013.11.008.
21. Akatov V.S. Snizhenie kal’tsifikatsii beskletochnykh transplantatov klapanov serdtsa putem vnedreniya v nikh pered implantatsiey izogennykh gladkomyshechnykh kletok [Decrease of decellularized heart valves calcification by isogenic smooth muscle cells treatment before implantation]. Vestnik transplantologii i iskusstvennykh organov, 2003, no. 4, pp. 64–67. (in Russian).
22. Webb C.L., Nguyen N.M., Schoen F.J., Levy R.J. Calcification of allograft aortic wall in a rat subdermal model. Am J Pathol, 1992, vol. 141, no. 2, pp. 487–496.
23. Kinoshita O., Yamauchi H., Motomura N., Ono M. Lanthanum carbonate, a phosphate binder, inhibits calcification of implanted aortic allografts in a rat model. Gen Thorac Cardiovasc Surg, 2018, Oct 29. doi: 10.1007/s11748-018-1026–7.
24. Hopkins R.A., Jones A.L., Wolfinbarger L., Moore M.A., Bert A.A., Lof land G.K. Decellularization reduces calcification while improving both durability and 1-year functional results of pulmonary homograft valves in juvenile sheep. J Thorac Cardiovasc Surg, 2009, vol. 137, no. 4, pp. 907–913. e1-4. doi: 10.1016/j.jtcvs.2008.12.009.
25. Honge J.L., Funder J., Hansen E., Dohmen P.M., Koner t z W., Hasenkam J.M. Recellularization of aortic valves in pigs. Eur J Cardiothorac Surg, 2011, vol. 39, no. 6, pp. 829–834. doi: 10.1016/j.ejcts.2010.08.054.
Формат файла: pdf (1.62 Мб)