А.И. Кубарко, В.А. Фираго
Учреждение образования «Белорусский государственный медицинский университет», Учреждение образования «Белорусский государственный университет»
Проанализированы данные спектрометрических измерений плотности, площади сечения микроциркуляторных сосудов поверхностных тканей, содержания в крови тканевых сосудов оксигемоглобина и их реакции на прекращение кровотока, ограничение притока артериальной крови и блокады оттока венозной крови. Характер и направленность полученных изменений согласуются с существующими представлениями о физиологических и патофизиологических механизмах реагирования сосудов и метаболизма тканей на нарушения локального кровотока. Метод спектрометрии может найти применение для оценки соответствия микроциркуляции метаболическим потребностям тканей в условиях физиологических нагрузок и патологии.
ключевые слова: спектрометрия, микроциркуляция, оксигемоглобин, потребление кислорода, метаболизм тканей

для цитирования: А.И. Кубарко, В.А. Фираго. Физиологическая оценка результатов спектрометрии удержания оксигемоглобина и реакции микрососудов на изменение гемодинамики. Неотложная кардиология и кардиоваскулярные риски. 2018, Т. 2. № 2. С. 358-363

Physiological evaluation of spectrometry results of oxyhemoglobin content and response of microvessels to hemodynamic changes
A.I. Kubarko, V.A. Firago
Spectroscopic measurements of the density and cross-sectional area of microcirculation vessels of superficial tissues, oxyhemoglobin blood content in these vessels and their response to the blood flow cessation, restriction of arterial blood flow and blockade of venous outflow have been analyzed. The character and direction of the revealed changes are consistent with the existing concepts of the physiological and pathophysiological mechanisms of vascular and tissue metabolism response to the local blood flow disorders. The spectrometry method can be used to assess the compliance of microcirculation to the tissues metabolic needs in functional stress and pathology.
keywords: spectrometry, microcirculation, oxyhemoglobin, oxygen consumption, tissue metabolism

for references: A.I. Kubarko, V.A. Firago. Physiological Evaluation of Spectrometry Results of Oxyhemoglobin Content and Response of Microvessels to Hemodynamic Changes. Emergency Cardiology and Cardiovascular Risks. 2018, vol. 2, № 2, pp. 358-363

[1] Shury’gin I.A. Monitoring dy’haniya: p u l’soksimetriya, kapnografiya, oksimetriya [Breath monitoring: pulse oximetry, capnography, oximetry]. SPb: Nevskiy Dialekt ; M. : BINOM, 2000, 301 p. (in Russian).
[2] Hitachi Developing Non-Invasive Blood Sugar Monitoring Device. Proprietary Technologies Would Take the Pain and Hassle Out of Measuring Blood Sugar Levels [electronic resource]. Available at: https:// www.yumpu.com/en/document/view/22311684/hitachi-developing-non- invasive-blood-sugar-monitoring-device. (accessed: 19. 10. 2017).
[3] Tuchina V.V. eds. Opticheskaya biomedicinskaya diagnostika. T 1. [Optical biomedical diagnostics. T.1]. Moskw: FizMatLit, 2007, 560 s. (in Russian).
[4] Rogatkin D.A. Fizicheskie osnovy’ opticheskoy oksimetrii [Physical basis of optical oximetry]. Med fizika, 2012, № 2, pp. 97-114. (in Russian).
[5] Drexler W. Cellular and Functional Optical Coherence Tomography of the Human Retina the Cogan Lecture. Invest Ophthalmol Vis Sci, 2007, vol. 48, № 12, pp. 5340-5351.
[6] Palczewski1 K. Silver Anniversary Review Focus on vision: 3 decades of remarkable contributions to biology and medicine. FASEB J 2011, vol. 25, № 2, pp. 439-443.
[7] Cheung C.Y., Ikram M.K., Sabanayagam Ch., Wong T.Y. Retinal Microvasculature as a Model to Study the Manifestations of Hypertension. Hypertension, 2012, vol. 60, № 5, pp. 1094-1103.
[8] Jacques S.L. Corrigendum: Opticalpropertiesofbiologicaltissues: areview. Phys Med Biol, 2013, vol. 58, pp. 5007.
[9] Ly’senko S.A., Firago V.A., Kugeyko M.M., Kubarko A.I. Opredelenie strukturno-morfologicheskih parametrov bul’barnoy kon‘yunktivy’ cheloveka po spektram diffuznogo otrajeniya sveta [The definition of structural- morphological parameters of the bulbar conjunctiva of man in the spectra of diffuse reflection of light]. Jurnprikladnoyspektroskopii, 2016, vol. 83, № 4, pp. 606-615. (in Russian).
[10] Nerobeev A. I., Dobrodeev A. S., Maly’hina I.F., Somova M.M., Garelik E.I. Kriterii vy’jivaemosti my’shechny’h loskutov na osnove tkanevoy somaticheskoy oksimetrii [Free muscle flaps survival criteria on the basis of tissue somatic oximetry]. Annaly’ plast, rekonstruktivie'stethirurgii, 2014, № 3, pp. 10-18. (in Russian).
[11] Maly’hina I.F., Nerobeev A.I., Dobrodeev A.S., Verbo E.V., Garelik E.I., Salihov K.S. Tkanevaya oksimetriya: ocenka jiznesposobnosti svobodny’h loskutov pri rekonstrukcii [Tissue Oximetry: Monitoring of Microsurgical Freetissue Transfers for Head and Neck Reconstruction]. Vopr rekonstruktiv ipiasthirurgii, 2015, vol. 18, № 2, pp. 11-24. (in Russian).
[12] Pinto M., Barjas-Castro M. L., Nascimenti S. The new noninvasive occlusion spectroscopy hemoglobin measurement method: a reliable and easy anemia screening test for blood donors. Transfusion, 2013, vol. 53, pp. 766-769.
[13] Lima A., van Bommel J., Sikorska K., van Genderen M., Klijn E., Lesaffre E., Ince C., Bakker J. The relation of near-infrared spectroscopy with changes in peripheral circulation in critically ill patients. Crit Care Med, 2011, vol. 39, № 7, pp. 1649-1654. doi: 10.1097/CCM.0b013e3182186675.
[14] Liasi F.T., Samatham R., Jacques S.L. Noninvasive in vivo optical characterization of blood flow and oxygen consumption in the superficial plexus of skin. JBiomed Opt, 2017, vol. 22, № 11, pp. 1-6. doi: 10.1117/ 1.JBO.22.11.115002.
[15] Dunaev A.V., Rogatkin D.A. K voprosu o vozmojnosti ispol’zovaniya metodov neinvazivnoy spektrofotometrii dlya kontrolya e‘ffektivnosti nizkointensivnoy lazernoy terapii [To question of possibility to use methods of non-invasive spectrophometry for controlling the effectiveness of the low level laser therapy]. Fundam i priklad problemy’ tehniki I tehnoiogii, 2009, № 3, pp. 110-115. (in Russian).
[16] Stromblad S. Measuring the Optical Properties o f Human Muscle Tissue using Time-of-Flight Spectroscopy in the Near Infrared: Magist. diss. Lund University Faculty of Engineering. LTH, 2015, 45 p.
[17] Wang W., Winlove C.P., Michel C.C. Oxygen partial pressure in outer layers of skin of human finger nail folds. J Physiol, 2003, vol. 549, № 3, pp. 855-863. doi: 10.1113/jphysiol.2002.037994.
[18] Ly’senko S. A. Operativnaya diagnostika bioob'ektovpo spektral’noprostranstvenny’m harakteristikam ih svetorasseyaniya [Operative diagnostics of biological objects by spectral-spatial characteristics of their light scattering]: Avtoref. diss. d-ra. fiz.-mat. nauk : 01.04.05. Minsk, BGU, 2017, 46 s. (in Russian).
[19] Krog A. Anatomiya i fiziologiya kapillyarov [The anatomy and physiology of capillaries]. M.: Moszdravotdel, 1927, 184 p. (in Russian).
[20] Svaasand L.O., Norwang L.T., Fiskerstrand E.J., Stopps E.K.S., Berns M.W., Nelson J.S. Tissue parameters determining the visual appearance of normal skin and port-wine stans. Laser Med Sci, 1995, vol. 10, pp. 55-65. doi: 10.1007/bf02133165.
[21] Gayton A.K., Holl E. Medicinskaya fiziologiya [Medical physiology]. M.: Logosfera, 2008, 1296 s. (in Russian).
[22] Marchal G., Young A.R., Baron J-C. Early Postischemic Hyperperfusion: Pathophysiologic Insights From Positron Emission Tomography. J Cereb Blood Flow Metab, 1999, № 19, p. 467-482.
[23] Tkachenko B.I. eds. Fiziologiya krovoobrasch’eniya: fiziologiya sosudistoy sistemy’ [Physiology of blood circulation: physiology of the vascular system]. L. : Nauka, 1984, 652 s. (in Russian).
[24] Jaszczak P. Skin oxygen tension, skin oxygen consumption, and skin blood flow measured by a tc-pO2 electrode. Acta PhysiolScandSupplJ991, № 603, pp. 53-57.
[25] Grundman A., Ludders D.W. The determination of the O2-consumption of the skin by the measurement of the decrease of the skin surface PO2 after flow stop using an optical O2-stnsor without O2-consumption : a theoretical analysis. Grote J., Witzleb eds. Regulation of blood flow and tissue oxygen supply. Verlag, 1994, pp. 265-270.
[26] Jensen-Kondering U., Baron J-C. Oxygen Imaging by MRI: Can Blood Oxygen Level-Dependent Imaging Depict theIschemic Penumbra? Stroke, 2012, vol. 43, № 8, pp. 2264-2269. doi: 10.1161/STROKEAHA.111.632455.
[27] Pal’cev M.A., Anichkov N.M. Patologicheskaya anatomiya. T. 1: Obsch’iy kurs [Pathological anatomy. Vol. 1: General course.]. M.: Medicina, 2001, 528 s. (in Russian).
Формат файла: pdf (1.18 Мб)