Е.А. Сухоцкая, Ю.В. Малиновская, П.А. Семижон, М.В. Черневская, М.И. Бельская, О.С. Павлова
Научно-исследовательский институт гигиены, токсикологии, эпидемиологии, вирусологии и микробиологии государственного учреждения «Республиканский центр гигиены, эпидемиологии и общественного здоровья», Минск, Республика Беларусь, Государственное учреждение «Республиканский научно-практический центр «Кардиология», Минск, Республика Беларусь
Получены изменения количественного состава определенных представителей кишечной микрофлоры, характерные для нормотензивных пациентов с висцеральным ожирением в сравнении с нормотензивными пациентами без висцерального ожирения – снижение пула комменсальных бактерий Faecalibacterium spp. (10,51 ± 1,13 vs. 9,5 ± 1,14, p = 0,020), Lactobacillus spp. (9,17 ± 1,74 vs. 8,00 ± 2,52, p = 0,025), Bacteroides spp. (9,02 ± 0,76 vs. 8,46 ± 0,47, p = 0,027), Fusobacterium spp. (13,4 ± 1,01 vs. 12,03 ± 0,92, p < 0,001), Bifidobacterium spp. (7,31 ± 1,16 vs. 5,95 ± 1,82, p = 0,028) соответственно. Количественное содержание представителей условно-патогенной микрофлоры кишечника Streprococcus spp. (6,31 ± 0,79 vs. 5,87 ± 0,78, p = 0,032) и Staphylococcus spp. (6,67 ± 1,23 vs. 5,98 ± 0,98, p = 0,036) было увеличено у пациентов с висцеральным ожирением в сравнении с группой пациентов без висцерального ожирения.
ключевые слова: visceral obesity, intestinal microflora, dysbiosis, quantitative PCR, Faecalibacterium spp., Lactobacillus spp., Bacteroides spp, Fusobacterium spp., Bifidobacterium spp., Streprococcus spp., Staphylococcus spp
для цитирования: Е.А. Сухоцкая, Ю.В. Малиновская, П.А. Семижон, М.В. Черневская, М.И. Бельская, О.С. Павлова. Кишечная микрофлора
Intestinal microflora of normotensive patients with visceral obesity
E. Sukhotskaya, Y. Malinovskaya, P. Semizhon, M. Chernevskaya, M. Belskaya, O. Pavlova
Weobtained changed readings in the quantitative composition of certain representatives of the intestinal microflora characteristic of normotensive patients with visceral obesity in comparison with normotensive patients without visceral obesity. They included a decreased pool of commensal bacteria Faecalibacterium spp. (10.51 ± 1.13 vs. 9.5 ± 1.14, p = 0.020), Lactobacillus spp. (9.17 ± 1.74 vs. 8.00 ± 2.52, p = 0.025), Bacteroides spp. (9.02 ± 0.76 vs. 8.46 ± 0.47, p = 0.027), Fusobacterium spp. (13.4 ± 1.01 vs. 12.03 ± 0.92, p < 0,001), Bifidobacterium spp. (7.31 ± 1.16 vs. 5.95 ± 1.82, p = 0.028) respectively. Quantitative content of representatives of opportunistic intestinal microflora Streprococcus spp. (6.31 ± 0.79 vs. 5.87 ± 0.78, p = 0.032) and Staphylococcus spp. (6.67 ± 1.23 vs. 5.98 ± 0.98, p = 0.036) was increased in patients with visceral obesity compared to the group of patients without visceral obesity.
keywords: visceral obesity, intestinal microflora, dysbiosis, quantitative PCR, Faecalibacterium spp., Lactobacillus spp., Bacteroides spp, Fusobacterium spp., Bifidobacterium spp., Streprococcus spp., Staphylococcus spp
for references: E. Sukhotskaya, Y. Malinovskaya, P. Semizhon, M. Chernevskaya, M. Belskaya, O. Pavlova.Intestinal microflora of normotensive patients with visceral obesity. Neotlozhnaya kardiologiya i kardiovaskulyarnye riski [Emergency cardiology and cardiovascular risks], 2024, vol. 8, no. 2, pp. 2282–2286.
1. Obesity and overweight. Bulletin World Health Organization. 2021.
2. Vasyukova O.V. Federal clinical guidelines for the diagnosis and treatment of obesity in children and adolescents. M.: Rossijskaya associaciya endokrinologov, 2013, pp. 5-8. (in Russian).
3. Borga M., West J., Bell J.D., et al. Advanced body composition assessment: From body mass index to body composition profiling. J Investig Med, 2018, vol. 66 (5), pp. 1-9. doi: 10.1136/jim-2018-000722.
4. Simoni P., Guglielmi R., Aparisi Gomez M.P. Imaging of body composition in children. Quant Imaging Med Surg, 2020, vol. 10 (8), pp. 1661-1671. doi: 10.21037/qims.2020.04.06.
5. Kotrova A.D., Shishkin A. N., Ermolenko E. I., Sarajkina D.A., et al. Gut microbiota in arterial hypertension. Arterialnaya gipertenziya, 2020, vol. 26, pp. 620-628. (in Russian).
6. Chervinec V. M., Chervinec Y.V., Belyaeva E.A., Petrova O.A., et al. Metabolic activity of highly antagonistic lactobacilli strains from healthy humans. Zhurnal mikrobiologii, epidemiologii i immunobiologii, 2018, vol. 95 (4), pp. 11-17. (in Russian).
7. Chen L., Luo Y., Wang H., et al. Effects of glucose and starch on lactate roduction by newly isolated streptococcus bovis S1 from saanen goats. Appl Environ Microbiol. 2016, vol. 82 (19), pp. 5982–5989. doi: 10.1128/AEM.01994-16.
8. Shariq O.A., McKenzie T.J. Obesity-related hypertension: a review of pathophysiology, management, and the role of metabolic surgery. Gland Surg, 2020, vol. 9 (1), pp. 80-93. doi: 10.21037/gs.2019.12.03.
9. Cuevas-Sierra A., Ramos-Lopez O., Riezu-Boj J.I., Milagro F.I., Martinez J.A. Diet, Gut Microbiota, and Obesity: Links with Host Genetics and Epigenetics and Potential Applications. Adv Nutr, 2019, vol. 10 (suppl_1), pp. S17-S30. doi: 10.1093/advances/nmy078.
10. Chervinec V.M., Chervinec Y.V., Serova N.E., et al. Microbiome of the oral cavity and intestine in patients with arterial hypertension. Bulletin of the Orenburg Scientific Center of the Ural Branch of the Russian Academy of Sciences, 2019, vol. 3, pp. 27. (in Russian).
11. .Chambers E.S., Preston T., Frost G., Morrison D.J. Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr Nutr Rep, 2018, vol. 7 (4), pp. 198-206. doi: 10.1007/s13668-018-0248-8.
12. .Kim S., Goel R., Kumar A. et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin. Sci. (Lond), 2018, vol. 132 (6), p. 701-718. doi: 10.1042/CS20180087.
Формат файла: pdf (307.68 Кб)