В.Г. Цапаев
УО «Белорусский государственный медицинский университет», г. Минск, Республика Беларусь
И сходное значение слова медицина – знать, понимать, постигать, различать. Именно постижение и понимание процессов, происходящих в организме пациента, является основанием распознавания болезни и выбора лечения недуга. Современная медицинская наука имеет две ипостаси: собственно медицина как врачевание больного человека и здравоохранение как комплекс общественных организационно-управленческих мероприятий, направленных на поддержание общественного здоровья. При несомненной синергичности этих двух гуманитарных оснований, следует признать, что доминирование общественных форм медицины оказывает тормозящее индивидуальную медицину действие. При этом для личности именно индивидуальная забота о здоровье является приоритетной. Современные научные мнения основываются на стереотипах, выведенных из статистических заключений, а не на понимании
ключевые слова: активные формы кислорода, антиоксиданты Электрон-транспортная цепь.

для цитирования: В.Г. Цапаев. Три вопроса медицинской интеллигенции: «что делать с окислительным стрессом; кто виноват в преждевременном

THREE QUESTIONS FROM THE MEDICAL COMMUNITY: WHAT TO DO ABOUT OXIDATIVE STRESS; WHAT IS THE CAUSE OF PREMATURE AGING; WHETHER YOU NEED TO TAKE ANTIOXIDANTS
Vadim. G. Tsapaev
T he original meaning of the word medicine is to know, understand, comprehend, and distinguish. It is the comprehension and understanding of the processes occurring in the patient’s body that is the basis for recognizing the disease and choosing treatment for the disease. Modern medical science has two forms: medicine itself as the treatment of a sick person and healthcare as a complex of public organizational and managerial measures aimed at maintaining public health. Given the undoubted synergy of these two humanitarian foundations, it should be recognized that the dominance of social forms of medicine has an inhibitory effect on individual medicine. At the same time, individual health care is a priority for the individual.
Modern scientific opinions are based on stereotypes derived from statistical conclusions, and not on an understanding of the pathogenetic mechanismsof diseases and their healing. This is largely facilitated by the uncontrolled circulation of unprofessional pseudoscientific information on the Internet and the media.
As a result, ideas about the essence of diseases and methods of therapy are formed in the form of primitive clichés of the “good and bad” type. Such stereotypes include views on oxidative processes in the body and especially on antioxidants: “Reactive oxygen species are very bad, antioxidants are good.”
In this article we would like to present a scientific point of view on this issue, drawing on the achievements of physiology and biochemistry, especially since this section of science is intensively developing at the present time.
keywords: reactive oxygen species, antioxidants, electron transport chain.

for references: Vadim. G. Tsapaev. Three questions from the medical community: what to do about oxidative stress; what is the cause of premature

Grivennikova A.D. Vinogradov V.G. Generation of reactive oxygen species by mitochondria. Uspekhi Biological Chemistry, 2013, vol. 53, p. 245-296. (in Russian).
2. Valdez L.B., Arnaiz S.L., Bustamante J. et al. Free redicals chemistry in biological systems. Biol. Res, 2000, vol. 33, no. 2. doi: 10.4067/S0716-97602000000200005.
3. Tsapaev V.G. Oxygen and its electronic aura. Moscow: RUSAINS, 20202. 98 p. (in Russian).
4. Bielski B.H.J. Reevaluation of the spectral and kinetic properties of HO 2 and O 2 - free radicals, Photochem Photobiol, 1978, vol. 28, pp. 645-649. doi: 10.1111/
j.1751-1097.1978.tb06986.x.
5. Holmström KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol, 2014, vol. 15(6), pp. 411-421.
6. Lambert A.J., Brand M.D. Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochem J, 2004, vol. 382(Pt 2), pp. 511-517. doi: 10.1042/BJ20040485.
7. Murphy M.P. How mitochondria produce reactive oxygen species. Biochem J, 2009, vol. 417(Pt 1), pp. 1-13. doi: 10.1042/BJ20081386.
8. Santulli G., Xie W., Reiken S.R., Marks A.R. Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci USA, 2015, vol. 112(36), pp. 11389-
11394. doi: 10.1073/pnas.1513047112.
9. Cadenas S. Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim Biophys Acta Bioenerg, 2018, vol. 1859(9), pp. 940-950. doi: 10.1016/
j.bbabio.2018.05.019.
10. Sahlin K., Tonkonogy M., Fernstrom M. The leaky mitochondria. Physiology News, 2004, vol. 56, pp. 27-28.
11. Finkel T. Signal transduction by reactive oxygen species. J Cell Biol, 2011, vol. 194, pp. 7-15.
12. Samoylenko A., Hossain J.A., Mennerich D., et al. Nutritional Countermeasures Targeting Reactive Oxygen Species in Cancer: From Mechanisms to Biomarkers and Clinical Evidence. Antioxid Redox Signal. 2013, vol. 19(17), pp. 2157-2196. doi: 10.1089/ars.2012.4662.
13. 1Gems D., Partridge L. “Stress-response hormesis and aging: “that which does not kill us makes us stronger”. Cell Metab, 2008, vol. 7, pp. 200-203.
14. Husain M., Bourret T.J., McCollister B.D. et al. Nitric oxide evokes an adaptive response to oxidative stress by arresting respiration. J Biol Chem, 2008, vol. 283, pp. 7682-7689.
15. Macarthur H., Westfall T.C., Wilken G.H. Oxidative stress attenuates NO-induced modulation of sympathetic neurotransmission in the mesenteric arterial bed of spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol, 2008, vol. 294(1), pp. H183-H189. doi: 10.1152/ajpheart.01040.2007.
16. Klebanoff S.J. Myeloperoxidase: friend and foe. J Leukoc Biol, 2005, vol. 77(5), pp. 598-625. doi: 10.1189/jlb.1204697.
17. Tan B.L., Norhaizan M.E., Liew W-P-P., Sulaiman R.H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases, Front Pharmacol, 2018, vol. 16(9),
pp. 1162. doi: 10.3389/fphar.2018.01162.
18. Halliwell B., Gutteridge J.M. The antioxidants of human extracellular fluids . Arch Biochem Biophys, 1990, vol. 280(1), pp. 1-8. doi: 10.1016/0003-9861(90)90510-6.
19. Salehi B., Martorell M., Arbiser J.L. et al. Antioxidants: Positive or Negative Actors? Biomolecules, 2018, vol. 8(4), pp. 124. doi: 10.3390/biom8040124.
20. Bouayed J., Bohn T. ed. Nutrition, Well-being and Health. ISBN: 978-953-51-0125-3, InTech, 2012, pp. 1-22.
21. Zaitone S.A., Abo-Elmatty D.M., Shaalan A. Acetyl-l-carnitine and α-lipoic acid affect rotenone-induced damage in nigral dopaminergic neurons of rat brain, implication for Parkinson’s disease therapy. Pharmacol Biochem Behav, 2012, vol. 100(3), pp. 347-360.
22. Novikov V.E., Levchenkova O.S., Pozhilova E.V. The role of reactive oxygen species in cell physiology and pathology and their pharmacological regulation. Reviews in Clinical Pharmacology and Drug Therapy, 2014, vol. 12(4), pp. 13-21. (in Russian).
23. Shen D., Dalton T.P., Nebert D.W., Shertzer H.G. Glutathione redox state regulates mitochondrial reactive oxygen production. J Biol Chem, 2005, vol. 280, pp. 25305-25312.
24. Cerimele F., Battle T., Lynch R. et al. Reactive oxygen signaling and MAPK activation distinguish epstein-barr virus (EBV)-positive versus EBV-negative burkitt’s lymphoma. Proc Natl Acad Sci USA, 2005, vol. 102 , pp. 175–179.
25. Jevas O.C. The Role of Reactive Oxygen Species and Antioxidants in Oxidative Stress. Int J Pharm Bio Sci, 2016, vol. 3(6), pp. 1-8.
Формат файла: pdf (5.63 Мб)