VARIANT ANATOMY OF THE SEMILUNAR LEAFLETS OF THE AORTIC AND PULMONARY VALVES BASED
H.A. Pasiuk, N.A. Trushel
The article presents contemporary domestic and foreign literature data
on the variant anatomy of the aortic and pulmonary semilunar leaflets.
The anatomical features shown include the differences in the structure
and number of semilunar leaflets, of their structural asymmetry, and
the variation in morphometric characteristics. Attention is given to the changes
in anatomical terminology since 2019, which now distinguishes the valvular complex of the heart, consisting of the fibrous skeleton of the heart, atrioventricular valves, and the roots of the aorta and pulmonary trunk. It is shown that there
is a limited amount of data in the literature regarding the sizes and positions
of nodules on the semilunar leaflets of the aortic and pulmonary valves. The article
focuses on the prevalence of openings and their morphometric characteristics
in the semilunar leaflets of the studied valves. Histological features of the semilunar leaflets are presented, which include thickening and changes in cellular
and fibrous composition depending on the age of the individual.
keywords: semilunar leaflets, aortic valves, pulmonary valve, human anatomy
for references: H.A. Pasiuk, N.A. Trushel. Variant anatomy of the semilunar leaflets of the aortic and pulmonary valves based. Neotlozhnaya kardiologiya i kardiovaskulyarnye riski [Emergency cardiology and cardiovascular risks], 2024, vol. 8, no. 1, pp. 2187–2192.
1. Mikhailov S.S. Klinicheskaya anatomiya serdtsa [Clinical anatomy of the heart]. M.:
Meditsina, 1987, 288 p. (in Russian).
2. Bokeriya L.A., Gudkova R.G. Serdechno-sosudistaya khirurgiya - 2013. Bolezni
i vrozhdennye anomalii sistemy krovoobrashcheniya [Cardiovascular surgery – 2013. Diseases and congenital anomalies of the circulatory system]. M.:
NTsSSKh im. A.N. Bakuleva, 2014, 220 p. (in Russian).
3. Thubrikar M. The Aortic Valve (1st ed.). New York : Routledge, 2011. doi: 10.4324/
9780203737163
4. FIPAT. Terminologia Anatomica. 2nd ed. FIPAT.library.dal.ca. Federative International
Programme for Anatomical Tarminology, 2019.
5. Coffey S., Roberts-Thomson R., Brown A. et al. Global epidemiology of valvular heart
disease. Nat Rev Cardiol, 2021, vol. 18, pp. 853-864. doi: 10.1038/s41569-021-00570-z.
6. Komarov R.N., Katkov A.I., Puzenko D.V. et al. Khirurgiya kornya aorty i aortalnogo
klapana: istoriya i sovremennost [Surgery of the aortic root and aortic valve: history
and modernity]. Patologiya krovoobrashcheniya i kardiokhirurgiya, 2019, vol. 23(4),
pp. 9-25. doi: 10.21688/1681-3472-2019-4-9-25. (in Russian).
7. Hribernik I. Thomson J., Ho A. et al. Comparative analysis of surgical and percutaneous
pulmonary valve implants over a 20-year period. Eur J Cardiothorac Surg, 2022,
vol. 61(3), pp. 572-579. doi: 10.1093/ejcts/ezab368.
8. Ozaki S., Kawase I., Yamashita H. et al. A total of 404 cases of aortic valve reconstruction with glutaraldehyde-treated autologous pericardium. J Thorac Cardiovasc Surg, 2014, vol. 147(1), pp. 301-306. doi: 10.1016/j.jtcvs.2012.11.012.
9. Baird C. W., Cooney B., Chávez M. et al. Congenital aortic and truncal valve reconstruction using the Ozaki technique: Short-term clinical results. J Thorac Cardiovasc
Surg, 2021, vol. 161(5), pp. 1567-1577. doi: 10.1016/j.jtcvs.2020.01.087.
10. Mathieu P., Bossé Yo., Huggins G. S. et al. The pathology and pathobiology of bicuspid aortic valve: State of the art and novel research perspectives. J Pathol Clin Res,
2015, pp. 1(4):195-206. doi:10.1002/cjp2.21.
11. Edwards J.E. The congenital bicuspid aortic valve. Circulation, 1961, vol. 23,
pp. 485-488. doi: 10.1161/01.cir.23.4.485.
12. Roberts W.C. The congenitally bicuspid aortic valve. A study of 85 autopsy cases.
Am J Cardiol, 1970, vol. 26(1), pp. 72-83. doi: 10.1016/0002-9149(70)90761-7.
13. Davies M.J. Pathology of Cardiac Valves. London: Butterworths & Co, 1980, pp. 1-61.
14. Roberts W.C. The congenitally bicuspid aortic valve. A study of 85 autopsy cases.
Am J Cardiol, 1970, vol. 26(1), pp. 72-83. doi: 10.1016/0002-9149(70)90761-7.
15. Hurwitz L.E., Roberts W.C. Quadricuspid semilunar valve. Am J Cardiol, 1973,
vol. 31(5), pp. 623-626. doi: 10.1016/0002-9149(73)90332-9.
16. Jung S-Y. Quadricuspid pulmonary valve in an adult patient identified by transthoracic echocardiography and multi-detector computed tomography. Hellenic J Cardiol, 2015, vol. 56, pp. 266-268.
17. Hurle J.M., Colvee E. Changes in the endothelial morphology of the developing
semilunar heart valves. A TEM and SEM study in the chick. Anat Embryol (Berl), 1983,
vol. 167(1), pp. 67-83. doi: 10.1007/BF00304601.
18. Fallahiarezoudar E., Ahmadipourroudposht M., Idris A., Yusof N.M. A review of:
application of synthetic scaffold in tissue engineering heart valves. Mater Sci Eng C
Mater Biol Appl, 2015, vol. 48, pp. 556-565. doi: 10.1016/j.msec.2014.12.016.
19. Sacks M.S., Smith D.B., Hiester E.D. The aortic valve microstructure: effects
of transvalvular pressure. J Biomed Mater Res, 1998, vol. 41, pp. 131-141. doi:
10.1002/(SICI)1097-4636(199807)41:1<131::aid-jbm16>3.0.co;2-q.
20. Gould S.T., Srigunapalan S., Simmons C.A., Anseth K.S. Hemodynamic and cellular
response feedback in calcific aortic valve disease. Circ Res, 2013, vol. 113(2),
pp. 186-197. doi: 10.1161/CIRCRESAHA.112.300154.
21. Yin Yip C.Y., Simmons C.A. The aortic valve microenvironment and its role in calcific
aortic valve disease. Cardiovasc Pathol, 2011, vol. 20, pp. 177-182. doi: 10.1016/
j.carpath.2010.12.001.
22.Scott M., Vesely I. Aortic valve cusp microstructure: the role of elastin. Ann Thorac
Surg, 1995, vol. 60(2 Suppl), pp. S391-394. doi: 10.1016/0003-4975(95)00263-k.
23.Kulchitskii K.I., Sokolov V.V., Marushchenko G. N. Klapany serdtsa [Heart valve]. Kiev:
Zdorove, 1990, 184 s. (in Russian).
24. Kilessa V. V., Kilessa G. S. Klapannyi apparat serdtsa - ot anomalii do porokov
[Valvular apparatus of the heart - from anomalies to valvular heart disease] Krymskii
terapevticheskii zhurnal, 2012, vol. 2(19), pp. 12-16. (in Russian).
25. van Geemen D., Soares Ana L.F., Oomen Pim J.A. et al. Age-dependent changes
in geometry, tissue composition and mechanical properties of fetal to adult
cryopreserved human heart valves. PLoS One, 2016, vol. 11(2), pp. e0149020. doi:
10.1371/journal.pone.0149020.
26.Stradins P., Lacis R., Ozolanta I. et al. Comparison of biomechanical and structural
properties between human aortic and pulmonary valve. Eur J Cardiothorac Surg,
2004, vol. 26(3), pp. 634-639. doi: 10.1016/j.ejcts.2004.05.043.
27. Roberts W.C. The structure of the aortic valve in clinically isolated aortic stenosis:
an autopsy study of 162 patients over 15 years of age. Circulation, 1970, vol. 42(1),
pp. 91-97. doi: 10.1161/01.cir.42.1.91.
28.Silver M.A., Roberts W.C. Detailed anatomy of the normally functioning aortic valve
in hearts of normal and increased weight. Am J Cardiol, 1985, vol. 55(4), pp. 454-461.
doi: 10.1016/0002-9149(85)90393-5.
29. De Kerchove L., Momeni M., Aphram G. et al. Free margin length and coaptation
surface area in normal tricuspid aortic valve: an anatomical study. Eur J Cardiothorac
Surg, 2018, vol. 53(5), pp. 1040-1048. doi: 10.1093/ejcts/ezx456.
30.Subramanian S., Tikhomirov V., Bharati S. et al. Relationship of Normal Aortic
Valve Cusp Dimensions: A Tool to Optimize Cusp Reconstruction Valvuloplasty.
Semin Thorac Cardiovasc Surg, 2016, vol. 28(2), pp. 521-527. doi: 10.1053/
j.semtcvs.2015.08.005.
31. Vollebergh F.E., Becker A.E. Minor congenital variations of cusp size in tricuspid
aortic valves. Possible link with isolated aortic stenosis. Br Heart J, 1977, vol. 39(9),
pp. 1006-1011. doi: 10.1136/hrt.39.9.1006.
32. Sliver M.A., Roberts W.C. Detailed anatomy of the normally functioning aortic valve
in hearts of normal and increased weight. Am J Cardiol, 1985, vol. 55(4), pp. 454-461.
doi: 10.1016/0002-9149(85)90393-5.
33. Ivanov V.A. Osobennosti stroeniya serdtsa i ego otdelnykh struktur u prakticheski
zdorovykh lits v zavisimosti ot ikh polovoi prinadlezhnosti [Gender-oriented
approach to the study of the anatomy of a healthy heart and its particular elements].
Astrakhanskii meditsinskii zhurnal, 2015, vol. 10(2), pp. 51-56. (in Russian).
34.Kunzelman K.S., Grande K.J., David T.E. et al. Aortic root and valve relationships.
Impact on surgical repair. J Thorac Cardiovasc Surg, 1994, vol. 107(1), pp. 162-170.
35.Boe B., Cheatham S.L., Armstrong A.K. et al. Leaflet morphology classification
of the Melody transcatheter pulmonary valve. Congenit Heart Dis, 2019, vol. 14(2),
pp. 297-304. doi: 10.1111/chd.12728.
36. Odinokova S.N., Nikolenko V.N., Komarov R.N. et al. Korrelyatsii morfometricheskikh
parametrov struktur kornya aor ty, imeyushchie prakticheskoe znachenie
v khirurgicheskoi korrektsii aortalnogo klapana [The correlations of morphometric
parameters of structures of the aortic root having practical significance in the surgical
correction of the aortic valve]. Morfologicheskie vedomosti, 2020, vol. 28(1),
pp. 30-36. doi: 10.20340/mv-mn.2020.28(1):30-36. (in Russian).
37. Ivanov V. A. Osobennosti stroeniya i korrelyatsionnye svyazi lineinykh razmerov
klapannogo apparata serdtsa u muzhchin i zhenshchin zrelogo vozrasta [Structural
features and correlation of linear dimensions of the valvular apparatus of the heart
in men and women of mature age]. Forcipe, 2020, vol. 3(S2), pp. 36-40. (in Russian).
38.Sahasakul Y., Edwards W.D., Naessens J.M., Tajik A.J. Age-related changes in aortic
and mitral valve thickness: implications for two-dimensional echocardiography
based on autopsy study of 200 normal human hearts. Am J Cardiol, 1988, vol.
62(7):424-430. doi: 10.1016/0002-9149(88)90971-x.
39. Gnyaneshwar R., Kumar R., Balakrishnan K. Dynamic analysis of the aortic valve
using a finite element model. Ann Thorac Surg, 2002, vol. 73(4), pp. 1122-1129. doi:
10.1016/s0003-4975(01)03588-3.
40.Schäfers H., Bierbach B., Aicher D. A new approach to the assessment of aortic cusp
geometry. J Thorac Cardiovasc Surg, 2006, vol. 132(2), pp. 436-438. doi: 10.1016/
j.jtcvs.2006.04.032.
41. Dudkiewicz D., Zhingre Sanchez J.D., Hołda J. et al. Aortic valve fenestrations:
Macroscopic assessment and functional anatomy study. Clin Anat, 2023, vol. 36(4),
pp. 612-617. doi: 10.1002/ca.24002.
42.Foxe A.N. Fenestrations of the semilunar valves. Am J Pathol, 1929, vol. 5(2),
pp. 179-182.
43. Volodko A. V., Kazachenok Ya. A. Vozrastnye osobennosti klapanov aorty i legochnogo
stvola cheloveka [Age-related features of human aortic valves and pulmonary trunk].
M., 2021. (in Russian).
44.Barkina MA, Demidov VO, Gaponov AA. Morfometriya klapanov aorty i legochnogo stvola [Morphometry of the aortic and pulmonary valves]. Vestnik
Uralskogo gosudarstvennogo meditsinskogo universiteta, 2023, vol. 3, pp. 82-88.
(in Russian).