РОЛЬ ИНСТРУМЕНТАЛЬНЫХ МЕТОДОВ ДИАГНОСТИКИ В ОЦЕНКЕ ЖИЗНЕСПОСОБНОСТИ МИОКАРДА У ПАЦИЕНТОВ СО СНИЖЕННОЙ КОНТРАКТИЛЬНОСТЬЮ ЛЕВОГО ЖЕЛУДОЧКА

С.В. Коваль, В.В. Шумовец, И.И. Гринчук, Т.В. Русак, А.А. Ефимова
РНПЦ «Кардиология». Минск, Беларусь
Резюме. В данном обзоре описаны наиболее значимые инструментальные методы диагностики жизнеспособного миокарда у пациентов со сниженной контрактильностью левого желудочка, так как диагностика жизнеспособного миокарда играет важную роль в тактике лечения пациентов с ишемической дисфункцией миокарда.
ключевые слова: сниженная контрактильность левого желудочка, позитронно-эмиссионная томография, магнитнорезонансная томография, стресс-эхокардиография.

для цитирования: РС.В. Коваль, В.В. Шумовец, И.И. Гринчук, Т.В. Русак, А.А. Ефимова. Роль инструментальных методов диагностики в оценке жизнеспособности миокарда у пациентов со сниженной контрактильностью левого желудочка. Неотложная кардиология и кардиоваскулярные риски, 2023, Т. 7, № 2, С. 2014–2020.

THE ROLE OF INSTRUMENTAL DIAGNOSTIC METHODS IN ASSESSING MYOCARDIAL VIABILITY IN PATIENTS WITH REDUCED LEFT VENTRICULAR CONTRACTILITY
S. Koval, V. Shumovets, I. Grinchuk, T. Rusak, A. Yefimova
Abstract. This review describes the most significant instrumental methods
of diagnosis of viable myocardium in patients with reduced contractility of the left ventricle, since diagnosis of myocardial viability plays an important role in the management of patients with ischemic myocardial dysfunction.
keywords: : reduced contractility of the left ventricle, positron emission tomography, magnetic resonance imaging, stress echocardiography.

for references: S. Koval, V. Shumovets, I. Grinchuk, T. Rusak, A. Yefimova. The role of instrumental diagnostic methods in assessing myocardial viability

Mozaffarian D., Benjamin E.J., Go A.S., Arnett D.K., Blaha M.J., Cushman M.,
de Ferranti S., Després J.P., Fullerton H.J. [et al.] Heart disease and stroke statistics-2015 update: A report from the American Heart Association. Circulation, 2015,
vol. 131, no. 4, pp. e29–322.
2. Ponikowski P., Voors A.A., Anker S.D., Bueno H., Cleland J.G.F., Coats A.J.S., Falk V.,
González-Juanatey J.R., Harjola V.P., Jankowska E.A. [et al.] 2016 ESC Guidelines
for the diagnosis and treatment of acute and chronic heart failure: The Task Force
for the diagnosis and treatment of acute and chronic heart failure of the European
Societ y of Cardiology (ESC). Developed with the special contribution
of the Heart Failure Association (HFA) of the ESC. Eur Heart J, 2016, vol. 37,
no. 27, pp. 2129–2200.
3. Nikiforov V.S., Nikitin A.E., Tyrenko V.V., Svistov A.S. Ishemicheskaya disfunkciya
miokarda [Ischemic myocardial dysfunction]. Мoscow, APKiPPRO, 2005, 102 p.
(in Russian).
4. Gowda R.M., Khan I.A, Vasavada B.C., Sacchi T.J. Reversible myocardial dysfunction:
basics and evaluation. Int J Cardiol, 2004, vol. 97, no. 3, pp. 349–353.
5. Soman P., Udelson J.E. Prognostic and therapeutic implications of myocardial viability in patients with heart failure. Curr Cardiol Rep, 2004, vol. 6, no. 3, pp. 211–216.
6. Yang T., Lu M.J., Sun H.S, Tang Y., Pan S.W., Zhao S.H. Myocardial scar identified
by magnetic resonance imaging can predict left ventricular functional improvement after coronary artery bypass grafting. PLoS One, 2013, vol. 8, no. 12,
pp. e81991.
7. Anagnostopoulos C., Georgakopoulos A., Pianou N., Nekolla S.G. Assessment
of myocardial perfusion and viability by positron emission tomography. Int J Cardiol,
2013, vol. 16, no. 5, pp. 1737–1749.
8. Ghesani M., Depuey E.G., Rozanski A. Role of F-18 FDG Positron emission tomography (PET) in the assessment of myocardial viability. Echocardiography, 2005, vol. 22,
no. 2, pp. 165–177.
9. Gropler R.J., Soto P. Recent advances in cardiac positron emission tomography
in the clinical management of the cardiac patient. Curr Cardiol Rep, 2004, vol. 22,
no. 1, pp. 20–26.
10. Mehta D., Iskandrian A.E. Myocardial viability: nuclear assessment. Echocardiography, 2005, vol. 22, no. 2, pp. 155–164.
11. Travin M.I., Bergmann S.R. Assessment of myocardial viability. Semin Nucl Med,
2005, vol. 35, no. 1, pp. 2–16.
12. Won K.S., Song B.I. Recent trends in nuclear cardiology practice. Chonnam Med J,
2013, vol. 49, no. 2, pp. 55–64.
13. Duncan B.H., Ahlberg A.W., Levine M.G., McGill C.C., Mann A., White M.P., Mather J.F.,
Waters D.D., Heller G.V. [et al.] Comparison of electrocardiographic-gated technetium-99m sestamibi singlephoton emission computed tomographic imaging
and restredistribution thallium-201 in the prediction of myocardial viability.
Am J Cardiol, 2000, vol. 85, no. 6, pp. 680–684.
14. Barrington S.F., Chambers J., Hallett W.A., O’Doherty M.J., Roxburgh J.C., Nunan T.O.
Comparison of sestamibi, thallium, echocardiography and PET for the detection
of hibernating myocardium. Eur J Nucl Med Mol Imaging, 2004, vol. 31, no. 3,
pp. 355–361.
15. Senior R., Kaul S., Raval U., Lahiri A. Impact of revascularization and myocardial
viability determined by nitrate-enhanced Tc-99m sestamibi and Tl-201 imaging
on mortality and functional outcome in ischemic cardiomyopathy. J Nucl Cardiol,
2002, vol. 9, no. 5, pp. 454–462.
16.Yamagishi H., Akioka K., Hirata K., Sakanoue Y., Toda I., Yoshiyama M., Teragaki M.,
Takeuchi K., Yoshikawa J., Ochi H. Dobutamine stress electrocardiography-gated
Tc-99m tetrofosmin SPECT for detection of viable but dysfunctional myocardium.
J Nucl Cardiol, 2001, vol. 8, no. 1, pp. 58–67.
17. Verani M.S., Taillefer R., Iskandrian A.E., Mahmarian J.J., He Z.X., Orlandi C.
123I–IPPA SPECT for the prediction of enhanced left ventricular function after
coronary bypass graft surgery. Multicenter IPPA Viability Trial Investigators.
123I-iodophenylpentadecanoic acid. J Nucl Med, 2000, vol. 41, no. 8, pp. 1299–1307.
18. 18. Soukhov V.Y., Nikiforov V.S., Nikitin A.E., Kravchuk V.N., Shilov V., Hubulava G.G.,
Svistov A. Predictive value of myocardial perfusion and metabolism studies
for prognosis of surgical revascularization efficacy. Eur J Nucl Med Mol Imaging,
2005, vol. 32, no. 1, pp. S56.
19. Tamaki N., Yoshinaga K. Novel iodinated tracers, MIBG and BMIPP, for nuclear cardiology. J Nucl Cardiol, 2011, vol. 18, no. 1, pp.135–143.
20. Fujita K., Kasama S., Kurabayashi M. Serial dual single-photon emission computed
tomography of thallium-201 and iodine-123 beta-methyliodophenyl pentadecanoic acid scintigraphy can predict functional recovery of patients with coronary
artery disease after coronary artery bypass graft surgery. Nucl Med Commun, 2015,
vol. 36, no. 2, pp. 148–155.
21. Zaharova A.I., Nikiforov V.S., Svistov A.S. Diagnosticheskie vozmozhnosti ekhokardiografii u bol’nyh ishemicheskoj bolezn’yu serdca [Diagnostic possibilities
of echocardiography in patients with ischemic heart disease]. Regional hemodynamics
and microcirculation, 2007, vol. 6, no. 4, pp. 78–85. (in Russian).
22.Scognamiglio R., Negut C., Palisi M. Spontaneous recovery of myocardial asynergic
segments following acute myocardial infarction. The role of post-extrasystolic
potentiation echocardiography in the predischarge evaluation. Eur J Echocardiogr,
2003, vol. 4, no. 2, pp. 135–140.
23. Nikiforov V.S. Postekstrasistolicheskoe potencirovanie v diagnostike zhiznesposobnogo disfunkcioniruyushchego miokarda [Postextrasystolic potentiation in viable
dysfunctioning myocardium diagnostics]. Ultrasound & Functional Diagnostics,
2008, no. 5, pp. 49–56. (in Russian).
24. Galatro K., Chaudhry F.A. Prognostic implications of myocardial contractile reserve
in patients with ischemic cardiomyopathy. Echocardiography, 2000, vol. 17, no. 1,
pp. 61–67.
25.Yao S.S., Chaudhry F.A. Assessment of myocardial viability with dobutamine stress
echocardiography in patients with ischemic left ventricular dysfunction. Echocardiography, 2005, vol. 22, no. 1, pp. 71–83.
26.Bountioukos M., Schinkel A.F., Bax J.J., Biagini E., Rizzello V., Krenning B.J., Vourvouri E.C., Roelandt J.R., Poldermans D. Pulsed-wave tissue Doppler quantification
of systolic and diastolic function of viable and nonviable myocardium in patients
with ischemic cardiomyopathy. Am Heart J, 2004, vol. 148, no. 6, pp. 1079–1084.
27. Hoffmann R., Altiok E., Nowak B., Heussen N., Kühl H., Kaiser H.J., Büll U., Hanrath P.
Strain rate measurement by doppler echocardiography allows improved assessment
of myocardial viability inpatients with depressed left ventricular function.
J Am Coll Cardiol, 2002, vol. 39, no. 3, pp. 443–449.
28. Nikiforov V.S., Nikitin A.E., Yalovets A.A. [et al.] Vyyavlenie zhiznesposobnogo
miokarda u bol’nyh s postinfarktnym kardiosklerozom s pomoshch’yu dobutaminovoj stress-ekhokardiografii, dopolnennoj tkanevoj dopplerografiej [Detection
of viable myocardium in patients with postinfarction cardiosclerosis using dobutamine stress echocardiography supplemented with tissue Doppler imaging]. Vestnik
Rossiiskoi Voenno-medicinskoi academii, 2005, suppl. 2, pp. 97–99. (in Russian).
29. Gong L., Li D., Chen J., Wang X., Xu T., Li W., Ren S., Wang C. Assessment of myocardial viability in patients with acute myocardial infarction by two-dimensional
speckle tracking echocardiography combined with lowdose dobutamine stress
echocardiography. Int J Cardiovasc Imaging, 2013, vol. 29, no. 5, pp. 1017–1028.
30. Nikiforov V.S., Marsalskaya O.A., Novikov V.I. Ekhokardiograficheskaya ocenka deformacii miokarda v klinicheskoj praktike [Echocardiographic assessment of myocardial
strain in clinical practice]. Saint Petersburg, KultInformPress, 2015. 28 р. (in Russian).
31. Hutyra M., Skala T., Kaminek M., Horak D., Kocher M., Tudos Z., Jarkovsky J., Precek J.,
Taborsky M. Speckle tracking echocardiography derived systolic longitudinal strain
is better than rest single photon emission tomography perfusion imaging for nonviable myocardium identification. Biomed Pap Med Fac Univ Palacky Olomouc Czech
Repub, 2013, vol. 157, no. 1, pp. 12–21.
32. Nikiforov V.S. Metody serdechno-sosudistoj vizualizacii v diagnostike zhiznesposobnogo miokarda pri ishemicheskoj bolezni serdca [Methods of cardiovascular visualization
for diagnostic of viable myocardium in patients with ischemic heart disease]. Saint
Petersburg, KultInformPress, 2012, 33 s. (in Russian).
33. Romero J., Xue X., Gonzalez W., Garcia M.J. CMR imaging assessing viability in patients with chronic ventricular dysfunction due to coronary artery disease: a meta-analysis of prospective trials. JACC Cardiovasc Imaging, 2012, vol. 5, no. 5,
pp. 494–508.
34. Glaveckaite S., Valeviciene N., Palionis D., Puronaite R., Serpytis P., Laucevicius A.
Prediction of long-term segmental and global functional recovery of hibernating
myocardium after revascularisation based on low dose dobutamine and late gadolinium enhancement cardiovascular magnetic resonance. J Cardiovasc Magn Reson,
2014, vol. 16, pp. 83.
35. Gonzalez J.A., Kramer C.M. Role of imaging techniques for diagnosis, prognosis and
management of heart failure patients: cardiac magnetic resonance. Curr Heart Fail
Rep, 2015, vol. 12, no. 4, pp. 276–283.
36.Yang T., Lu M.J., Sun H.S., Tang Y., Pan S.W., Zhao S.H. Myocardial scar identified
by magnetic resonance imaging can predict left ventricular functional improvement
after coronary artery bypass grafting. PLoS One, 2013, vol. 8, no. 12, pp. e81991.
Формат файла: pdf (2.04 Мб)