Т.С. Королева , А.Г. Булгак , И.Б. Моссэ , Н.Г. Седляр , О.В. Зотова
Государственное учреждение «Республиканский научно-практический центр «Кардиология», Минск, Беларусь, Государственное учреждение образования «Белорусская медицинская академия последипломного образования», Государственной научное учреждение «Институт генетики и цитологии Национальной академии наук Беларуси»
Оценена взаимосвязь полиморфных вариантов генов FGA, FGG, F2, F5, F11, F13, PAI-1 и GP6 с данными клинико-инструментальных и лабораторных исследований среди пациентов с инфарктом миокарда из Республики Беларусь. Показано, что для пациентов с инфарктом миокарда имеются статистически значимые ассоциации между полиморфными вариантами генов F11 (rs2289252 и rs2036914), F13 (rs5985), F5 (rs6025), PAI-1 (rs1799889), FGG (rs2066865) и рядом лабораторных значений и функциональных показателей миокарда. Совокупный анализ как генетической компоненты (полиморфизм ДНК), так и результатов
динамичного наблюдения пациента в стационаре, способен корректно оценить риски возникновения и нежелательного прогрессирования заболеваний, включая инфаркт миокарда.
ключевые слова: инфаркт миокарда, полиморфизм, лабораторные исследования, функциональные показатели миокарда, ассоциация.

для цитирования: Т. С. Королева, А. Г. Булгак, И. Б. Моссэ, Н. Г. Седляр, О. В. Зотова. Ассоциация полиморфизма генов системы гемостаза с клиниколабораторными показателями у пациентов с инфарктом миокарда. Неотложная кардиология и кардиоваскулярные риски, 2023, Т. 7, № 2, С. 1928–1936.

ASSOCIATION OF THE HEMOSTASIS GENE POLYMORPHISMS WITH CLINICAL AND LABORATORY FINDINGS IN PATIENTS WITH MYOCARDIAL INFARCTION
T.S. Koroleva , A.G. Bulgak , I.B. Mosse , N.G. Sedlyar , O.V. Zotova
The article presents the analysis of the association between polymorphic variants
of the FGA, FGG, F2, F5, F11, F13, PAI-1, and GP6 genes and clinical, instrumental,
and laboratory data in patients with myocardial infarction from the Republic of Belarus. It has been demonstrated that in patients with myocardial infarction, there exist statistically significant correlations between polymorphic variants of the genes F11 (rs2289252 and rs2036914), F13 (rs5985), F5 (rs6025),PAI-1 (rs1799889), FGG (rs2066865), and a variety of laboratory values and functional indicators of the myocardium. A comprehensive analysis of the genetic component (DNA polymorphism) and the outcomes of dynamic follow-up of the patient in hospital enable clinicians to accurately assess potential hazards of the occurrence and unfavorable progression of a number of diseases including myocardial infarction.
keywords: myocardial infarction, polymorphism, laboratory tests, myocardial function indicators, association

for references: T.S. Koroleva, A.G. Bulgak, I.B. Mosse, N.G. Sedlyar, O.V. Zotova. Association of the hemostasis gene polymorphisms with clinical and laboratory findings in patients with myocardial infarction. Neotlozhnaya kardiologiya i kardiovaskulyarnye riski [Emergency cardiology and cardiovascular risks], 2023, vol. 7, no. 2, pp. 1928–1936.

Pavlova O., Patseyev A., Stelmashok V. Country report Belarus – February 2017. 2017, 11 s.
2. Hartiala J.A., Han Y, Jia Q., Hilser J.R., Huang P., Gukasyan J., Schwartzman W.S.,
Cai Z., Biswas S., Trégouët D.A., Smith N.L. [et al.] Genome-wide analysis identifies
novel susceptibility loci for myocardial infarction. Eur. Heart J, 2021, vol. 42, no. 9,
pp. 919-933. doi: 10.1093/eurheartj/ehaa1040.
3. Sakaue S., Kanai M., Tanigawa Y., Karjalainen J., Kurki M., Koshiba S., Narita A.,
Konuma T., Yamamoto K., Akiyama M., Ishigaki K., Suzuki A. [et al.] A cross-population atlas of genetic associations for 220 human phenotypes. Nat. Genet, 2021,
vol. 53, no. 10, pp. 1415-1424. doi: 10.1038/s41588-021-00931-x.
4. Dönertaş H.M., Fabian D.K., Valenzuela MF, Partridge L, Thornton JM. Common
genetic associations between age-related diseases. Nat Aging, 2021, vol. 1, no. 4,
pp. 400-412. doi: 10.1038/s43587-021-00051-5.
5. Sedlyar N.G., Gonchar A.L., Ameljanovich M.D., Mosset I.B. Rol’ geneticheskih faktorov v predraspolozhennosti k nevynashivaniyu beremennosti [Role of genetic
factors in predisposition to pregnancy loss]. Molekulyarnaya i prikladnaya genetika.
2016, vol. 20, pp. 87-95. (in Russian).
6. Sedlyar N.G., Mosse I.B., Kundas L.A., Gonchar A.L., Amel’yanovich M.D. Ocenka
riska nevynashiva niya beremennosti na osnove molekulyarno-geneticheskogo
analiza [Assessment of a miscarriage risk based on the molecular genetic analysis].
Molekulyarnaya i prikladnaya genetika. 2020, vol. 28, pp. 91-103. (in Russian).
7. Mosse I.B., Zotova O.V., Koroleva T.S., Nikolaeva N.V., Gonchar A.L. Rol’ geneticheskogo polimorfizma v razvitii infarkta miokarda sredi muzhchin iz Respubliki Belarus’
[The role of genetic polymorphism in the development of myocardial infarction in
men from the Republic of Belarus]. Mediko-biologicheskie problemy zhiznedeyatel’nosti, 2021, no. 1, pp. 102-112. (in Russian).
8. Elbaz A., Poirier O., Canaple S., Chédru F., Cambien F., Amarenco P. The association
between the Val34Leu polymorphism in the factor XIII gene and brain infarction.
Blood, 2000, vol. 95, no. 2, pp. 586-591.
9. Mannila M.N., Eriksson P., Ericsson C.G., Hamsten A., Silveira A. Epistatic and pleiotropic effects of polymorphisms in the fibrinogen and coagulation factor XIII genes
on plasma fibrinogen concentration, fibrin gel structure and risk of myocardial infarction. Thromb Haemost, 2006, vol. 95, no. 3, pp.420-427. doi: 10.1160/TH05-11-0777.
10. Wells P.S., Anderson J.L., Scarvelis D.K, Doucette S.P., Gagnon F. Factor XIII Val34Leu
variant is protective against venous thromboembolism: a HuGE review and metaanalysis. Am. J. Epidemiol, 2006, vol. 164, no. 2, pp. 101-109. doi: 10.1093/aje/kwj179.
11. Dull K., Fazekas F., Törocsik D. Factor XIII-A in Diseases: Role Beyond Blood Coagulation. Int. J. Mol. Sci, 2021, vol. 22, no. 3, pp. 1459. doi: 10.3390/ijms22031459.
12. Ambroziak M., Kuryłowicz A., Budaj A. Increased coagulation factor XIII activity
but not genetic variants of coagulation factors is associated with myocardial infarction in young patients. J. Thromb. Thrombolysis, 2019, vol. 48, no. 3, pp. 519-
527. doi: 10.1007/s11239-019-01856-3.
13. Mannila M.N., Eriksson P., Leander K., Wiman B., de Faire U., Hamsten A., Silveira A.
The association between fibrinogen haplotypes and myocardial infarction in men
is partly mediated through pleiotropic effects on the serum IL-6 concentration.
J. Intern. Med., 2007, vol. 261, no. 2, pp. 138-147. doi: 10.1111/j.1365-2796.2006.01749.x.
14. Van Cott E.M., Laposata M. Laboratory evaluation of hypercoagulable states. Hematol. Oncol. Clin. North. Am, 1998, vol. 12, no. 6, pp.1141-1166. doi: 10.1016/j.cll.2009.03.002.
15. Juul K., Tybjaerg-Hansen A., Schnohr P., Nordestgaard B.G. Factor V Leiden and the risk
for venous thromboembolism in the adult Danish population. Ann. Intern. Med, 2004,
vol. 140, no. 5, pp. 330-337. doi: 10.7326/0003-4819-140-5-200403020-00008.
16. Casas J.P., Hingorani A.D., Bautista L.E., Sharma P. Meta-analysis of genetic studies
in ischemic stroke: thirty-two genes involving approximately 18,000 cases and
58,000 controls. Arch. Neurol, 2004, vol. 61, no. 11, pp. 1652-1661. doi: 10.1001/
archneur.61.11.1652.
17. Bentley P., Peck G., Smeeth L., Whittaker J., Sharma P. Causal relationship of susceptibility genes to ischemic stroke: comparison to ischemic heart disease and biochemical determinants. PLoS One, 2010, vol. 5, no. 2, pp. e9136. doi: 10.1371/journal.
pone.0009136.
18. Zee R.Y.L., Bubes V., Shrivastava S., Ridker P.M., Glynn R.J. Genetic risk factors in recurrent venous thromboembolism: A multilocus, population-based, prospective approach.
Clin. Chim. Acta, 2009, vol. 402, no. 1-2, pp. 189-192. doi: 10.1016/j.cca.2009.01.011.
19. Lynch A.I., Eckfeldt J.H., Davis B.R., Ford C.E., Boerwinkle E., Leiendecker-Foster C.,
Arnett D.K. Gene panels to help identify subgroups at high and low risk of coronary
heart disease among those randomized to antihypertensive treatment: the GenHAT
study. Pharmacogenet Genomics, 2012, vol. 22, no. 5, pp. 355-366. doi: 10.1097/
fpc.0b013e3283516ff8.
20. Li Y., Bezemer I.D., Rowland C.M., Tong C.H., Arellano A.R., Catanese J.J., Devlin J.J.,
Reitsma P.H., Bare L.A., Rosendaal F.R. Genetic variants associated with deep vein
thrombosis: the F11 locus. J. Thromb. Haemost, 2009, vol. 7, no. 11, pp. 1802-1808.
doi: 10.1111/j.1538-7836.2009.03544.x.
21. Reiner A.P., Lange L.A., Smith N.L., Zakai N.A., Cushman M., Folsom A.R. Common
hemostasis and inflammation gene variants and venous thrombosis in older adults
from the Cardiovascular Health Study. J. Thromb. Haemost. 2009, vol. 7, no. 9,
pp. 1499-1505. doi: 10.1111/j.1538-7836.2009.03522.x.
22.ElGalaly T.C., Severinsen M.T., Overvad K., Steffensen R., Vistisen A.K., Tjønneland A.,
Kristensen S.R. Single nucleotide polymorphisms and the risk of venous thrombosis:
results from a Danish case-cohort study. Br. J. Haematol. 2013, vol. 160, no. 6,
pp. 838-841. doi: 10.1111/bjh.12132.
23. Delluc A., Gourhant L., Lacut K., Mercier B., Audrezet M.P., Nowak E., Oger E., Leroyer C.,
Mottier D., Le Gal G., Couturaud F. Association of common genetic variations and idiopathic venous thromboembolism. Results from EDITh, a hospital-based case-control
study. Thromb. Haemost. 2010, vol. 103, no. 6, pp. 1161-1169. doi: 10.1160/TH09-07-0430.
24. Rovite V., Maurins U., Megnis K., Vaivade I., Pečulis R., Rits J., Prave S., Klovins J.
Association of F11 polymorphism rs2289252 with deep vein thrombosis and related
phenotypes in population of Latvia. Thromb. Res, 2014, vol. 134, no. 3, pp. 659-663.
doi: 10.1016/j.thromres.2014.07.011.
25.Theodoraki E.V., Nikopensius T., Suhorutsenko J., Peppes V., Fili P., Kolovou G., Papamikos V., Richter D., Zakopoulos N., Krjutskov K., Metspalu A., Dedoussis G.V. Fibrinogen beta variants confer protection against coronary artery disease in a Greek
case-control study. BMC Med. Genet, 2010, vol. 11. doi: 10.1186/1471-2350-11-28.
26.de Willige S.U., de Visser M.C., Houwing-Duistermaat J.J., Rosendaal F.R., Vos H.L.,
Bertina R.M. Genetic variation in the fibrinogen gamma gene increases the risk
for deep venous thrombosis by reducing plasma fibrinogen gamma’ levels. Blood.
2005, vol. 106, no. 13, pp. 4176-4183. doi: 10.1182/blood-2005-05-2180.
27. Grünbacher G., Weger W., Marx-Neuhold E., Pilger E., Köppel H., Wascher T., März W.,
Renner W. The fibrinogen gamma (FGG) 10034C>T polymorphism is associated
with venous thrombosis. Thromb. Res, 2007, vol. 121, no. 1, pp. 33-36. doi: 10.1016/
j.thromres.2007.03.007.
28. Horvei L.D., Braekkan S.K., Smith E.N., Solomon T., Hindberg K., Frazer K.A.,
Rosendaal F.R., Hansen J.B. Joint effects of prothrombotic genotypes and body
height on the risk of venous thromboembolism: the Tromsø study. J. Thromb. Haemost.
2018, vol. 16, no. 1, pp.83-89. doi: 10.1111/jth.13892.3.
29. Rinde L.B., Morelli V.M., Småbrekke B., Mathiesen E.B., Løchen M.L., Njølstad I.,
Wilsgaard T., Smith E., Rosendaal F.R., Frazer K.A., Braekkan S.K., Hansen J.B. Effect
of prothrombotic genotypes on the risk of venous thromboembolism in patients
with and without ischemic stroke. The Tromsø Study. J. Thromb. Haemost, 2019, vol. 17,
no. 5, pp. 749-758. doi: 10.1111/jth.14410.
30.Sejrup J.K., Morelli V.M., Løchen M.L., Njølstad I., Mathiesen E.B., Wilsgaard T.,
Hansen J.B., Brækkan S.K. Myocardial infarction, prothrombotic genotypes,
and venous thrombosis risk: The Tromsø Study. Res. Pract. Thromb. Haemost, 2020,
vol. 4, no. 2, pp. 247-254. doi: 10.1002/rth2.12306.
31. Tomasoni M., Beyeler M.J., Vela S.O., Mounier N., Porcu E., Corre T., Krefl D., Button A.L,
Abouzeid H., Lazaros K., Bochud M., Schlingemann R., Bergin C., Bergmann S. Genome-wide Association Studies of Retinal Vessel Tortuosity Identify Numerous
Novel Loci Revealing Genes and Pathways Associated With Ocular and Cardiometabolic Diseases. Ophthalmol. Sci, 2023, vol. 3, no. 3, pp. 100288. doi: 10.1016/
j.xops.2023.100288.
Формат файла: pdf (275.95 Кб)