Н.Л. Цапаева, С.Ф. Золотухина, Е.В. Миронова, И.В. Гайдукевич, В.Л. Родич, Е.В. Бураковская
УО «Белорусский государственный медицинский университет», г. Минск, Республика Беларусь; УЗ «4 городская клиническая больница имени Н.Е. Савченко», г. Минск, Республика Беларусь
По данным российского эпидемиологического исследования ЭПОХА–ХСН (1998–2017 гг.) в течение 20-летнего наблюдения распространенность хронической сердечной недостаточности (ХСН) увеличилась с 6,1 до 8,2%. Основными причинами формирования ХСН остаются артериальная гипертония, ишемическая болезнь сердца, фибрилляция предсердий, сахарный диабет. При этом острый инфаркт миокарда (ОИМ) как причина формирования сердечной недостаточности увеличилась в 3 раза. Медиана времени дожития среди пациентов с ХСН I–II функционального класса (ФК) составляет 8,4 года, пациентов с ХСН III–IV ФК – 3,8 года, что свидетельствует о плохом прогнозе ХСН любого функционального класса. В настоящее время предложен ряд клинических, биохимических, ангиографических, визуализирующих подходов к стратификации риска ХСН после ОИМ, однако только немногие из них используются в рутинной клинической практике. Учитывая нарастающий вклад ХСН в заболеваемость и смертность после ОИМ, необходима ранняя мультимодальная стратификация риска для разработки профилактических стратегий, направленных на предотвращение этого осложнения. В настоящем сообщении представлены современные взгляды на роль клинических факторов риска, биохимических и генетических маркеров ХСН, рассматриваемых как ранние предикторы формирования сердечной недостаточности у пациентов с острым инфарктом миокарда.
ключевые слова: сердечная недостаточность, клинические факторы риска, биомаркеры, генетика, неблагоприятное ремоделирование.

для цитирования: Н.Л. Цапаева, С.Ф. Золотухина, Е.В. Миронова, И.В. Гайдукевич, В.Л. Родич, Е.В. Бураковская. Мультимодальный подход для оценки риска развития сердечной недостаточности у пациентов с острым инфарктом миокарда (Часть 1). Клинические и лабораторные предикторы. Неотложная кардиология и кардиоваскулярные риски, 2022, Т. 6, № 2, С. 1592–1603.

A multimodal approach to assess the risk of heart failure in patients with acute myocardial infarction (part 1). Clinical and laboratory predictors
N. Tsapaeva, S. Zolotuhina, Е. Mironova, I. Gajdukevich, V. Rodich, Е. Burakovskaja
According to the Russian epidemiological study EPOСHA-CHF (1998–2017), during a 20-year follow-up, the prevalence of chronic heart failure (CHF) increased from 6.1 to 8.2%. Arterial hypertension, coronary heart disease, atrial fibrillation, diabetes mellitus remain the main causes of CHF. At the same time, acute myocardial infarction (AMI) as a cause of heart failure increased by 3 times. The median survival time among the patients with CHF I-II functional class (FC) is 8.4 years, and 3.8 years among the patients with CHF III-IV FC, which indicates a poor prognosis of CHF of any functional class. Currently, a number of clinical, biochemical, angiographic, and imaging approaches have been proposed to stratify the risk of CHF after AMI, but only a few of them are used in routine clinical practice. Given the increasing contribution of CHF to morbidity and mortality after myocardial infarction, early multimodal risk stratification is needed to develop preventive strategies aimed at averting this complication. This report presents current ideas about the role of clinical risk factors, biochemical and genetic markers of CHF, considered as early predictors of heart failure in patients with acute myocardial infarction.
keywords: heart failure, clinical risk factors, biomarkers, genetics, adverse remodelling.

for references: N. Tsapaeva, S. Zolotuhina, Е. Mironova, I. Gajdukevich, V. Rodich, Е. Burakovskaja. A Multimodal approach to assess the risk of heart failure in patients with acute myocardial infarction (Part 1). Clinical and laboratory predictors. Neotlozhnaya kardiologiya i kardiovaskulyarnye riski [Emergency cardiology and cardiovascular risks], 2022, vol. 6, no. 2, pp. 1592–1603.

1. Tsao C.W., Lyass A., Enserro D., Larson M.G., Ho J.E., Kizer J.R., Gottdiener J.S., Psaty B.M., Vasan R.S. Temporal Trends in the Incidence of and Mortality Associated with Heart Failure with Preserved and Reduced Ejection Fraction. JACC: Heart Failure, 2018, vol. 6, no. 8, pp.678–685. DOI: 10.1016/j.jchf.2018.03.006.
2. Vinogradova N.G., Polyakov D.S., Fomin I.V. Analysis of mortality in patients with heart failure after decompensation during longterm follow-up in specialized medical care and in real clinical practice [Analysis of mortality in patients with CHF after decompensation with long-term follow-up in specialized medical care and in real clinical practice]. Kardiologiia, 2020, vol. 60, no. 4, pp.91–100. (in Russian).
3. Shah K.S, Xu H., Matsouaka R.A., Bhatt D.L., Heidenreich P.A., Hernandez A.F., Devore A.D., Yancy C.W., Fonarow G.C. Heart Failure with Preserved, Borderline, and Reduced Ejection Fraction. J Am Coll Cardiol, 2017, vol. 70, no. 20, pp. 2476–2486. DOI: 10.1016/j.jacc. 2017.08.074.
4. Boytsov S.A., Balanova Yu.A., Shal’nova S.A., Deev A.D., Artamonova G.V., Gatago-nova T.M. [et al.] Arterial’naya gipertoniya sredi lic 25-64 let: rasprostranennost’, osvedomlennost’, lechenie i kontrol’. Po materialam issledovaniya ESSE [Arterial hypertension among people aged 25-64: prevalence, awareness, treatment and control. based on the materials of the ESSAY study.]. Kardiovaskulyarnaya terapiya i profilaktika, 2014, vol. 13, no. 4, pp. 4–14. DOI: 10.15829/1728-8800-2014-4-4-14. (in Russian).
5. Gerber Y., Weston S.A., Enriquez-Sarano M., Berardi C., Chamberlain A.M., Manemann S.M. [et al.] Mortality Associated with Heart Failure After Myocardial Infarction: A Contemporary Community Perspective. Circulation: Heart Failure, 2016, vol. 9, no. 1, pp. e002460. DOI: 10.1161/CIRCHEARTFAILURE.115.002460.
6. Xanthakis V., Enserro D.M., Larson M.G., Wollert K.C., Januzzi J.L., Levy D. [et al.] Prevalence, Neurohormonal Correlates, and Prognosis of Heart Failure Stages in the Community. JACC: Heart Failure, 2016, vol. 4, no. 10, pp. 808–815. DOI: 10.1016/j.jchf.2016.05.00.
7. Fomin I.V., Belenkov Yu.N., Mareev V.Yu., Ageev F.T., Badin Yu.V., Galyavich A.S. [et al.] Prevalence of CHF in European part of the Russian Federation: data from EPOCH-CHF [The prevalence of chronic heart failure in the European part of the Russian Federation. EPOCH–HSN data]. Russian Heart Failure Journal, 2006, vol. 7, no. 1, pp. 4–7. (in Russian).
8. Shechrbinina E.V., Badin Yu.V., Vaysberg A.R. Dynamics of the etiological causes of CHF formation in a representative sample of the Nizhny Novgorod region over 9 years of follow-up (1998-2007) [Dynamics of etiological causes of CHF formation in a representative sample of the Nizhny Novgorod region over 9 years of follow-up (1998-2007)]. All-Russian Conference of CHF: “Heart failure, 2007”. – M., 2007, pp. 38. (in Russian).
9. Benjamin E.J., Muntner P., Alonso A., Bittencourt M.S., Callaway C.W., Carson A.P. [et al.] Heart Disease and Stroke Statistics–2019 Update: A Report from the American Heart Association. Circulation, 2019, vol. 139, no. 10, pp. e56–528. DOI: 10.1161/CIR.0000000000000659]
10. Polyakov D.S., Fomin I.V., Belenkov Yu.N., Mareev V.Yu., Ageev F.T., Artem’eva E.G., Badin Yu.V., Bakulina E.V., Vinogradova N.G., Galyavich A.S., Ionova T.S., Kamalov G.M., Kechedzhieva S.G., Koziolova N.A., Malenkova V.Yu., Mal’chikova S.V., Mareev Yu.V., Smirnova E.A., Tarlovskaya E.I., Shcherbinina E.V., Yakushin S.S. Hronicheskaya serdechnaya nedostatochnost’ v Rossijskoj Federacii: chto izmenilos’ za 20 let nablyudeniya? Rezul’taty issledovaniya EPOHA–HSN [Chronic heart failure in the russian federation: what has changed over 20 years of follow-up? Results of the epoch-chf study]. Kardiologiya, 2021, vol. 61, no. 4, pp. 4–14. DOI: 10.18087/cardio.2021.4.n1628. (in Russian).
11. Steg P.G., Dabbous O.H., Feldman L.J., Cohen-Solal A., Aumont M.C., López-Sendón J., Budaj A., Goldberg R.J., Klein W., Anderson F.A. Determinants and prognostic impact of heart failure complicating acute coronary syndromes: observations from the Global Registry of Acute Coronary Events (GRACE). Circulation, 2004, vol. 109, pp. 494–499.
12. DeGeare V.S., Boura J.A., Grines L.L., O’Neill W.W., Grines C.L. Predictive value of the Killip classification in patients undergoing primary percutaneous coronary intervention for acute myocardial infarction. Am J Cardiol, 2001, vol. 87, pp. 1035–1038.
13. Nicod P., Gilpin E., Dittrich H., Chappuis F., Ahnve S., Engler R., Henning H., Ross J. Influence on prognosis and morbidity of left ventricular ejection fraction with and without signs of left ventricular failure after acute myocardial infarction. Am J Cardiol, 1988, vol. 61, pp. 1165–1171.
14. Braunwald E. Heart failure. JACC Heart Fail, 2013, vol. 1, no. 1, pp. 1–20. doi: 10.1016/j.jchf.2012.10.002.
15. Heusch G., Gersh B.J. The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur Heart J, 2017, vol. 38, pp. 774–784.
16. Sulo G., Igland J., Vollset S.E., Nygård O., Ebbing M., Sulo E., Egeland G.M., Tell G.S. Heart failure complicating acute myocardial infarction, vol. burden and timing of occurrence: a nation-wide analysis including 86 771 patients from the cardiovascular disease in Norway (CVDNOR) project. J Am Heart Assoc, 2016, vol. 5, no. 1, pp. e002667.
17. Wellings J., Kostis J.B., Sargsyan D., Cabrera J., Kostis W.J. Risk factors and trends in incidence of heart failure following acute myocardial infarction. Am J Cardiol, 2018, vol. 122, no. 1, pp. 1–5.
18. Desta L., Jernberg T., Lofman I., Hofman-Bang C., Hagerman I., Spaak J., Persson H. Incidence, temporal trends, and prognostic impact of heart failure complicating acute myocardial infarction. The SWEDEHEART Registry (Swedish Web-System for Enhancement and Development of Evidence-Based Care in Heart Disease Evaluated According to Recommended Therapies): a study of 199,851 patients admitted with index acute myocardial infarctions, 1996 to 2008. JACC Heart Fail, 2015, vol. 3, no. 3, pp. 234–242.
19. Kelly D.J., Gershlick T., Witzenbichler B., Guagliumi G., Fahy M., Dangas G., Mehran R., Stone G.W. Incidence and predictors of heart failure following percutaneous coronar y inter vention in ST-se gment elevation myoc ardial inf arc tion: the HORIZONS-AMI trial. Am Heart J, 2011, vol. 162, no. 4, pp. 663–670.
20. Shaw L.J., Bairey Merz C.N., Pepine C.J., Reis S.E., Bittner V., Kelsey S.F., Olson M., Johnson B.D., Mankad S., Sharaf B.L., Rogers W.J., Wessel T.R., Arant C.B., Pohost G.M., Lerman A., Quyyumi A.A., Sopko G. Insights from the NHLBI-Sponsored Women’s Ischemia Syndrome Evaluation (WISE) Study: part I: gender differences in traditional and novel risk factors, symptom evaluation, and gender-optimized diagnostic strategies. J Am Coll Cardiol, 2006, vol. 47, suppl. 3. S4–S20. ratio in predicting short- and long-term mortality after non-ST-elevation myocardial infarction. Am J Cardiol, 2010, vol. 106, pp. 470–476.
21. Sorajja P., Gersh B.J., Cox D.A., McLaughlin M.G., Zimetbaum P., Costantini C., Stuckey T., Tcheng J.E., Mehran R., Lansky A.J., Grines C.L., Stone G.W. Impact of multivessel disease on reperfusion success and clinical outcomes in patients undergoing primary percutaneous coronary intervention for acute myocardial infarction. Eur Heart J,2007, vol. 28, no. 14, pp. 1709–1716.
22. Carrick D., Haig C., Maznyczka A.M., Carberry J., Mangion K., Ahmed N., Yue May V.T., McEntegart M., Petrie M.C., Eteiba H., Lindsay M., Hood S., Watkins S., Davie A., Mahrous A., Mordi I., Ford I., Radjenovic A., Welsh P., Sattar N., Wetherall K., Oldroyd K.G., Berry C. Hypertension, microvascular pathology, and prognosis after an acute myocardial infarction. Hypertension, 2018, vol. 72, no. 3, pp. 720–730.
23. Richards A.M., Nicholls M.G., Troughton R.W., Lainchbury J.G., Elliott J., Frampton C., Espiner E.A., Crozier I.G., Yandle T.G., Turner J. Antecedent hypertension and heart failure after myocardial infarction. J Am Coll Cardiol, 2002, vol. 39, no. 7, pp. 1182–1188.
24. Melchior T., Rask-Madsen C., Torp-Pedersen C., Hildebrandt P., Kober L., Jensen G. The impact of heart failure on prognosis of diabetic and non-diabetic patients with myocardial infarction: a 15-year follow-up study. Eur J Heart Fail, 2001, vol. 3, no. 1, pp. 83–90.
25. Tonelli M., Wiebe N., Culleton B., House A., Rabbat C., Fok M., McAlister F., Garg A.X. Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol: JASN, 2006, vol. 17, no. 7, pp. 2034–2047.
26. Lewis E.F., Moye L.A., Rouleau J.L., Sacks F.M., Arnold J.M., Warnica J.W., Flaker G.C., Braun-wald E., Pfeffer M.A. Predictors of late development of heart failure in stable survivors of myocardial infarction: the CARE study. J Am Coll Cardiol, 2003, vol. 42, no. 8, pp. 1446–1453.
27. Myftiu S., Bara P., Sharka I., Shkoza A., Belshi X., Rruci E., Vyshka G. Heart failure predictors in a group of patients with myocardial infarction. Open access Maced J Med Sci, 2016, vol. 4, no. 3, pp. 435–438.
28. GBD 2015 Obesity Collaborators, Afshin A., Forouzanfar M.H.., Reitsma M.B., Sur P., Estep K., Lee A., Marczak L., Mokdad A.H., Moradi-Lakeh M., Naghavi M., Salama J.S., Vos T., Abate K.H., Abbafati C., Ahmed M.B., Al-Aly Z., Alkerwi A. [et al]. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N Engl J Med, 2017, vol. 377, no. 1, pp. 13–27. DOI: 10.1056/NEJMoa1614362.
29. Nakamura K., Fuster J., Walsh K. Adipokines: a link between obesity and cardiovascu-lar disease. J Cardiol, 2014, vol. 63, no. 4, pp. 250–259. DOI: 10.1016/j.jjcc.2013.11.006.
30. Moons K.G., Altman D.G., Reitsma J.B., Ioannidis J.P., Macaskill P., Steyerberg E.W., Vickers A.J., Ransohoff D.F., Collins G.S. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. Ann Intern Med, 2015, vol. 162, no. 1, pp. 55–63.
31. Teo F., de Oliveira R., Mamoni R., Ferreira M., Nadruz W., Coelho O., Fernandes J., Blotta M.H. Characterization of CD4+CD28-null T cells in patients with coronary artery disease and individuals with risk factors for atherosclerosis. Cell Immunol, 2013, vol. 281, no. 1, pp. 11–19.
32. Grimaldi V., De Pascale M., Zullo A., Soricelli A., Infante T., Mancini F., Napoli C. Evi-dence of epigenetic tags in cardiac fibrosis. J Cardiol, 2017, vol. 69, no. 2, pp. 401–408.
33. Akselrod A.S., Shchekochikhin D.Yu., Tebenkova E.S., Zhelankin A.V., Stonogina D.A., Syrkina E.A., Ternovoy S.K. Contemporary diagnostic algorithm for coronary artery disease: achievements and prospects [Contemporary diagnostic algorithm for coronary artery disease: achievements and prospects]. Russian Journal of Cardiology and Cardiovascular Surgery, 2019, vol. 12, no. 5, pp. 418–428. doi: 10.17116/kardio201912051418. (in Russian).
34. Nguyen T.L., Phan JA, Hee L, Moses DA, Otton J, Terreblanche OD, Xiong J, Premawardhana U, Rajaratnam R, Juergens CP, Dimitri HR, French JK, Richards DA, Thomas L. High-sensitivity troponin T predicts infarct scar characteristics and adverse left ventricular function by cardiac magnetic resonance imaging early after reperfused acute myocardial infarction. Am Heart J, 2015, vol. 170, no. 4, pp. 715–725.e2.
35. Tzivoni D., Koukoui D., Guetta V., Novack L., Cowing G. Comparison of Troponin T to creatine kinase and to radionuclide cardiac imaging infarct size in patients with ST-elevation myocardial infarction undergoing primary angioplasty. Am J Cardiol, 2008, vol. 101, no. 6, pp. 753–757
36. Maisel A.S. Cardiac Biomarkers: Expert Advice for Clinicians. New Delphi (India): JayPee Brothers. 2012, 259 p.
37. Mayr A., Mair J., Schocke M., Klug G., Pedarnig K., Haubner B.J., Nowosielski M., Grubinger T., Pachinger O., Metzler B. Predictive value of NT-pro BNP after acute myocardial infarction: relation with acute and chronic infarct size and myocardial function. Int J Cardiol, 2011, vol. 147, no. 1, pp. 118–123.
38. Rehman S.U., Mueller T., James L.J. Characteristics of the Novel Interleukin Family Biomarker ST2 in patients with acute heart failure. J Am Coll Cardiol, 2008, vol. 52, no. 18, pp. 1458−1465.
39. Pascual-Figal D.A., Ordonez-Lianos J., Tomel P.L. Soluble ST2 for Predicting Sudden Cardiac Death in Patients With Chronic Heart Failure and Left Ventricular Systolic Dysfunction. J. of the Am. College of Cardiology, 2009, vol. 54, no. 23, pp. 1428−1439.
40. Al Aseri Z.A., Habib S.S., Marzouk A. Predictive value of high sensitivity C-reactive protein on progression to heart failure occurring after the first myocardial infarction. Vasc Health Risk Manag, 2019, vol. 15, pp. 221–227.
41. Reinstadler S.J., Feistritzer H.J., Reindl M., Klug G., Mayr A., Mair J., Jaschke W., Metzler B. Combined biomarker testing for the prediction of left ventricular remodelling in ST-elevation myocardial infarction. Open Heart, 2016, vol. 3, pp. e000485.
42. Azab B., Zaher M., Weiserbs K.F., Torbey E., Lacossiere K., Gaddam S., Gobunsuy R., Jadonath S., Baldari D., McCord D. [et al.] Usefulness of neutrophil to lymphocyte
43. Núñez J., Núñez E., Bodí V., Sanchis J., Miñana G., Mainar L., Santas E., Merlos P., Rumiz E., Darmofal H. [et al.] Usefulness of the neutrophil to lymphocyte ratio in predicting long-term mortality in ST segment elevation myocardial infarction. Am J Cardiol, 2008, vol. 101, no. 6, pp. 747–752.
44. Voors A.A., von Haehling S., Anker S.D., Hillege H.L., Struck J., Hartmann O., Bergmann A., Squire I., van Veldhuisen D.J., Dickstein K. C-terminal provasopressin (copeptin) is a strong prognostic marker in patients with heart failure after an acute myocardial infarction: results from the OPTIMAAL study. Eur Heart J, 2009, vol. 30, pp. 1187–1194.
45. Miner E.C. Miller W.L. A Look between the cardiomyocytes: the extracellular matrix in heart failure. Mayo Clin. Proc, 2016, vol. 81, no. 1, pp. 71–76.
46. Bornstein P., Sage E.H. Matricellular proteins: extracellular modulators of cell function. Curr. Opin. Cell. Biol, 2002, vol. 14, no. 5, pp. 608–616.
47. Fertin M., Lemesle G., Turkieh A., Beseme O., Chwastyniak M., Amouyel P., Bauters C., Pinet F. Serum MMP-8: a novel indicator of left ventricular remodeling and cardiac outcome in patients after acute myocardial infarction. PLoS ONE, 2013, vol. 8, no. 8, pp. e71280.
48. Wagner D.R., Delagardelle C., Ernens I., Rouy D., Vaillant M., Beissel J. Matrix metalloproteinase-9 is a marker of heart failure after acute myocardial infarction. J Card Fail, 2006, vol. 12, no. 1, pp. 66–72.
49. Lubos E., Schnabel R., Rupprecht H.J. [et al.] Prognostic value of tissue inhibitor of metal-loproteinase-1 for cardiovascular death among patients with cardiovascular disease: results from the atherogene study. Eur. Heart J, 2006, vol. 27, no. 2, pp. 150–156.
50. Tsapaeva N.L., Zolotuhina S.F., Mironova E.V., Tarashkevich N.V., Egorova N.I. Ocenka riska kardiovaskulyarnyh oslozhnenij v otdalennom periode pervichnogo chreskozhnogo koronarnogo vmeshatel’stva i obosnovanie sposoba ih profilaktiki [Assessment of the risk of cardiovascular complications in the long-term period of primary percutaneous coronary intervention and justification of the method of their prevention]. Neotlozh. kardiologiya i kardiovaskulyar. riski, 2019, no. 2, pp. 726–734. (in Russian).
51. Capaeva N.L., Tarashkevich N.V., Mironova E.V., Shoyan’ Yan, Konstantinova E.E., Chernoglaz P.F., Yurlevich D.I. Mikrocirkulyatornaya disfunkciya u pacientov s nepolnoj revaskulyarizaciej miokarda v otdalennom periode pervichnogo chrezkozhnogo koronarnogo vmeshatel’stva (vozmozhnosti diagnostiki i lecheniya) [Microcirculatory dysfunction in patients with incomplete myocardial revascularization in the long-term period of primary percutaneous coronary intervention (diagnostic and treatment options)]. Neotlozh. kardiologiya i kardiovaskulyar. riski, 2017, no. 1, pp. 125–131. (in Russian).
52. Beygui F., Montalescot G., Vicaut E., Rouanet S., Van Belle E., Baulac C., Degrandsart A., Dallongeville J. vol. OPERA Investigators. Aldosterone and long-term outcome after myocardial infarction: A substudy of the french nationwide Observatoire sur la Prise en charge hospitalière, l’Evolution à un an et les caRactéristiques de patients présentant un infArctus du myocarde avec ou sans onde Q (OPERA) study. Am Heart J,2009, vol. 157, no. 4, pp. 680–687. doi: 10.1016/j.ahj.2008.12.013.
53. Beygui F., Collet J.P., Benoliel J.J., Vignolles N., Dumaine R., Barthélémy O., Montalescot G. High plasma aldosterone levels on admission are associated with death in patients presenting with acute ST-elevation myocardial infarction. Circulation, 2006, vol. 114, no. 24, pp. 2604-2610. doi: 10.1161/CIRCULATIONAHA.106.634626.
54. Resic N., Durak-Nalbantic A., Dzubur A., Begic A., Begic E. Serum Aldosterone as Predictor of Progression of Coronary Heart Disease in Patients Without Signs of Heart Failure After Acute Myocardial Infarction. Med Arch, 2018, vol. 72, no. 6, pp. 406–409. doi: 10.5455/medarh.2018.72.406-409.
55. Glicksberg B.S., Amadori L., Akers N.K., Sukhavasi K., Franzén O., Li L., Belbin G.M., Ayers K.L., Shameer K., Badgeley M.A. [et al.] Integrative analysis of loss-of-function variants in clinical and genomic data reveals novel genes associated with cardiovascular traits. BMC Med Genomics, 2019, vol. 12, suppl. 6, pp.108. doi: 10.1186/s12920-019-0542-3.
56. Kakizaki M., Nobori K., Watanabe H., Iino K., Ishida M., Ito H. Increased circulating CD3+/CD31+ T cells in patients with acute coronary syndrome. Heart Vessels, 2013, vol. 28, no. 5, pp. 566–569.
57. Frangogiannis N.G. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med, 2019, vol. 65, pp. 70–99.
58. Thum T., Schmitter K., Fleissner F., Wiebking V., Dietrich B., Widder J.D., Jazbutyte V., Hahner S., Ertl G., Bauersachs J. Impairment of endothelial progenitor cell function and vascularization capacity by aldosterone in mice and humans. Eur Heart J, 2011, vol. 32, pp. 1275–1286.
59. Ellis K.L., Palmer B.R., Frampton C.M., Troughton R.W. Doughty R.N., Whalley G.A., Ellis C.J., Pilbrow A.P., Skelton L., Yandle T.G., Richards A.M., Cameron V.A. Genetic variation in the renin–angiotensin–aldosterone system is associated with cardiovascular risk factors and early mortality in established coronary heart disease. J of Human Hypertension, 2013, vol. 27, no. 4, pp. 237–244.
60. Casiglia E., Tikhonoff V., Mazza A., Rynkiewicz A., Limon J., Caffi S., Guglielmi F., Martini B., Basso G., Winnicki M., Pessina A.C., Somers V.K. C-344T polymorphism of the aldosterone synthase gene and blood pressure in the elderly: A population-based study. J. Hypertens, 2005, vol. 23, no. 11, pp. 1991–1996.
61. Nuritdinov N. A., Association of the Polymorphism rs1799998 CYP11B2 Gene with Left Ventricular Diastolic Function in Patients with Chronic Heart Failure, American Journal of Medicine and Medical Sciences, Vol. 11 No. 8, 2021, pp. 598-601.
Формат файла: pdf (1.02 Мб)