1. Moriya J. Critical roles of inflammation in atherosclerosis. J Cardiol., 2019, vol. 73, no. 1, pp. 22–27. doi.org/10.1016/j.jjcc.2018.05.010.
2. Mitkovskaya N.P., Grigorenko E.A., Pateyuk I.V. Statkevich T.V., Kurak T.A., Terekhov V.I., Shved M.V., Shumskaya E.N. Rannyaya diagnostika ateroskleroza [Early diagnosis of atherosclerosis]. Kardiologiya v Belarusi, 2012, vol. 6, pp. 134–155. (in Russian).
3. Meldekhanov T.T., Esergepova S.R., Yerzhanov B.T., Elkind T.N., Urazaeva M.T., Kabdygaliev E.A., Kabanova R.A., Elesheva K.K. Patogenez ateroskleroza. [Patogenesis of atherosclerosis]. Aktual’nye problemy v teoreticheskoj i klinicheskoj medicine, 2021, no. 4, vol. 34, pp. 21–28. doi: 10.24412/2790-1289-2021-42128. (in Russian).
4. Aimagambetova A.O. Аteroskleroz i vospalenie. Obzor [Аtherogenesis and inflammation. Reviews]. Nauka i Zdravookhranenie, 2016, vol. 1, pp. 24–39. (in Russian).
5. Ramji D.P., Davies T.S. Cytokines in atherosclerosis: Key players in all stages of disease and promising therapeutic targets. Cytokine & growth factor reviews, 2015, vol. 26, no. 6, pp.673–685. doi.org/10.1016/j.cytogfr.2015.04.003.
6. Moss J.W., Ramji D.P. Cytokines: roles in atherosclerosis disease progression and potential therapeutic targets. Future Med Chem, 2016, vol. 8, no. 11. pp. 1317–1330. doi: 10.4155/fmc-2016-0072.
7. Aviña-Zubieta, J Antonio et al. Risk of cardiovascular mortality in patients with rheumatoid arthritis: a meta-analysis of observational studies. Arthritis and rheumatism, 2008, vol. 59, no. 12, pp. 1690-1697. doi: 10.1002/art.24092
8. Wu G.C., Liu H.R., Leng R.X., Li X.P., Li X.M., Pan H.F., Ye D.Q. Subclinical atherosclerosis in patients with systemic lupus erythematosus: A systemic review and meta-analysis. Autoimmun. Rev, 2016, vol. 15, no. 1, pp. 22–37. doi: 10.1016/j.autrev.2015.10.002.
9. Henrot P., Foret J., Barnetche T., Lazaro E., Duffau P., Seneschal J., Schaeverbeke T., Truchetet M.E., Richez C. Assessment of subclinical atherosclerosis in systemic lupus erythematosus: A systematic review and meta-analysis. Jt. Bone Spine, 2018, vol. 85, pp.155–163. doi: 10.1016/j.jbspin.2017.12.009.
10. Avina-Zubieta J.A., To F., Vostretsova K., De Vera M., Sayre E.C., Esdaile J.M. Risk of myocardial infarction and stroke in newly diagnosed systemic lupus erythematosus: a general population-based study. Arthritis Care Res (Hoboken), 2017, vol. 69, no. 6, pp. 849–856. doi: 10.1002/acr.23018.
11. Mathieu S., Soubrier M. Cardiovascular events in ankylosing spondylitis: a 2018 meta-analysis. Ann Rheum Dis, 2019, vol. 78, no. 6, p. 57. https://doi.org/10.1136/annrheumdis-2018-213317.
12. Arida A., Protogerou A.D., Konstantonis G., Konsta M., Delicha E.M., Kitas G.D., Sfikakis P.P. Subclinical Atherosclerosis Is Not Accelerated in Patients with Ankylosing Spondylitis with Low Disease Activity: New Data and Metaanalysis of Published Studies. J. Rheumatol, 2015, vol. 42, no. 11, pp. 2098–2105. doi: 10.3899/jrheum.150316.
13. Kurak T.A., Mitkovskaya N.P., Avdey L.L., Ilyina T.V., Shkrebneva E.I., Kot Z.N., Petrova E.B. Ateroskleroz u pacientov s revmatoidnym artritom: rol’ okislennyh lipoproteinov nizkoj plotnosti [Atherosclerosis in patients with rheumatoid arthritis: the role of oxidized low-density lipoproteins]. Vestsі NAN Belarusі. Ser. med. navuk, 2014, vol. 4, pp. 4–8. (In Russian.).
14. Arida A., Protogerou A.D., Kitas G.D., Sfikakis P.P. Systemic Inflammatory Response and Atherosclerosis: The Paradigm of Chronic Inflammatory Rheumatic Diseases. Int J Mol Sci, 2018, vol. 19, no. 7, pp. 1890. doi.org/10.3390/ijms19071890.
15. Badimon L., Peña E., Arderiu G., Padró T., Slevin M., Vilahur G., Chiva-Blanch G. C-Reactive Protein in Atherothrombosis and Angiogenesis. Front Immunol., 2018, vol. 9, pp. 430. doi.org/10.3389/fimmu.2018.00430.
16. Zhu Y., Xian X., Wang Z., Bi Y., Chen Q., Han X., Tang D., Chen R. Research Progress on the Relationship between Atherosclerosis and Inflammation. Biomolecules, 2018, vol. 8, no. 3, pp. 80. doi.org/10.3390/biom8030080.
17. Danesh J., Whincup P., Walker M., Lennon L., Thomson A., Appleby P., Gallimore J.R., Pepys M.B. Low grade inflammation and coronary heart disease: Prospective study and updated meta-analyses. BMJ, 2000, vol. 321, pp. 199–204. doi: 10.1136/bmj.321.7255.199.
18. Ridker P.M. C-reactive protein and the prediction of cardiovascular events among those at intermediate risk: Moving an inflammatory hypothesis toward consensus. J Am Coll Cardiol, 2007, vol. 49, no. 21, pp. 2129–2138. doi: 10.1016/j.jacc.2007.02.052.
19. Ridker P.M., Rifai N., Rose L., Buring J.E., Cook N.R. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med, 2002, vol. 347, no. 20, pp. 1557–1565. doi: 10.1056/NEJMoa021993.
20. Shah P.K. Circulating markers of inf lammation for vascular risk prediction: Are they ready for prime time. Circulation, 2000, vol. 101, no. 15, pp. 1758–1759. doi: 10.1161/01.cir.101.15.1758.
21. de Beer F.C., Hind C.R., Fox K.M., Allan R.M., Maseri A., Pepys M.B. Measurement of serum C-reactive protein concentration in myocardial ischaemia and infarction. Br Heart J,1982, vol. 47, no. 3, pp. 239–243. doi: 10.1136/hrt.47.3.239.
22. Berk B.C., Weintraub W.S., Alexander R.W. Elevation of C-reactive protein in ‘active’ coronary artery disease. Am J Cardiol, 1990, vol. 65, no. 3, pp. 168–172. doi: 10.1016/0002-9149(90)90079-g.
23. Danesh J., Wheeler J.G., Hirschfield G.M., Eda S., Eiriksdottir G., Rumley A., Lowe G.D., Pepys M.B., Gudnason V. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med, 2004, vol. 350, no. 14, pp. 1387–1397. doi: 10.1056/NEJMoa032804.
24. Biasucci L.M., Liuzzo G., Grillo R.L., Caligiuri G., Rebuzzi A.G., Buffon A., Summaria F., Ginnetti F., Fadda G., Maseri A. Elevated levels of C-reactive protein at discharge in patients with unstable angina predict recurrent instability. Circulation, 1999, vol. 99, no. 7, pp.855–860. doi: 10.1161/01.cir.99.7.855.
25. Fu Y., Wu Y., Liu, E. C-reactive protein and cardiovascular disease: From animal studies to the clinic (Review). Exp Ther Med, 2020, vol. 20, no. 2, pp. 1211–1219.
26. Jones S.A. Directing transition from innate to acquired immunity: defining a role for IL-6. J Immunol, 2005, vol. 175, no. 6, pp. 3463–3468. doi.org/10.4049/jimmunol.175.6.3463.
27. Kaptoge S., Seshasai S.R., Gao P., Freitag D.F., Butterworth A.S., Borglykke A., Di Angelantonio E., Gudnason V., Rumley A., Lowe G.D., Jørgensen T., Danesh J. Inflammatory cytokines and risk of coronary heart disease: new prospective study and updated meta-analysis. European heart journal, 2014, vol. 35, no. 9, pp. 578–589. doi.org/10.1093/eurheartj/eht367.
28. Held C., White H. D., Stewart R., Budaj A., Cannon C.P., Hochman J.S., Koenig W., Siegbahn A., Steg P.G., Soffer J., Weaver W.D., Östlund O., Wallentin L. Inflammatory Biomarkers Interleukin-6 and C-Reactive Protein and Outcomes in Stable Coronary Heart Disease: Experiences From the STABILITY (Stabilization of Atherosclerotic Plaque by Initiation of Darapladib Therapy) Trial. J Am Heart Assoc, 2017, vol. 6, no.10, pp. e005077. doi.org/10.1161/JAHA.116.005077.
29. Steven, S., Frenis, K., Oelze, M., Kalinovic, S., Kuntic, M., Bayo Jimenez, M. T., Vujacic-Mirski, K., Helmstädter, J., Kröller-Schön, S., Münzel, T., & Daiber, A. Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease.Oxidative medicine and cellular longevity, 2019, 7092151. doi: 10.1155/2019/7092151.
30. Gao Z., Liu Z., Wang R., Zheng Y., Li H., Yang L. Galectin-3 Is a Potential Mediator for Atherosclerosis [electronic resource]. J Immunol Res, 2020. Available at: https://pubmed.ncbi.nlm.nih.gov/32149158/. (accessed 28.09.2022). doi: 10.1155/2020/5284728.
31. de Boer R.A., van Veldhuisen D.J., Gansevoort R.T., Muller Kobold A.C., van Gilst W.H., Hillege H.L., Bakker S.J., van der Harst P. The fibrosis marker galectin-3 and outcome in the general population. J Intern Med, 2012, vol. 272, no. 1, pp. 55–64.
32. Mortensen M.B., Fuster V., Muntendam P. Mehran R., Baber U., Sartori S., Falk E. Negative risk markers for cardiovascular events in the elderly. J Am College Cardiology, 2019, vol. 74, no. 1, pp. 1–11.
33. Kaya H., Ertas F., Islamoglu Y., Kaya Z., Atılgan Z.A., Çil H., Çalışkan A., Aydın M., Oylumlu M., Soydinç M.S. Association between neutrophil to lymphocyte ratio and severity of coronary artery disease. Clin Appl Thromb Hemost, 2013, vol. 20, no. 1, pp. 50–54. doi.org/10.1177/1076029612452116.
34. Zhang G.Y., Chen M., Yu Z.M., Wang X.D., Wang Z.Q. Relation between neutrophil-to-lymphocyte ratio and severity of coronary artery stenosis. Genet Mol Res, 2014, vol. 13, no. 4, pp. 9382–9389.
35. Sharma K., Patel A.K., Shah K.H., Konat A. Is Neutrophil-to-Lymphocyte Ratio a Predictor of Coronary Artery Disease in Western Indians? [electronic resource]. Int J Inflam, 2017. doi: 10.1155/2017/4136126. Available at: https://pubmed.ncbi.nlm.nih.gov/28811954. (accessed 12.10.2022).
36. Tamhane U.U., Aneja S., Montgomery D., Rogers E.K., Eagle K.A., Gurm H.S. Association between admission neutrophil to lymphocyte ratio and outcomes in patients with acute coronary syndrome. Am J Cardiol, 2008, vol. 102, no. 6, pp. 653–657. doi.org/10.1016/j.amjcard.2008.05.006.
37. Zhou D., Wan Z., Fan Y., Zhou J., Yuan Z. A combination of the neutrophil-to-lymphocyte ratio and the GRACE risk score better predicts PCI outcomes in Chinese Han patients with acute coronary syndrome. Anatol J Cardiol, 2015, vol. 15, no. 12, pp. 995–1001. doi.org/10.5152/AnatolJCardiol.2015.6174.
38. Misumida N., Kobayashi A., Saeed M., Fox J.T., Kanei Y. Neutrophil-to-lymphocyte ratio as an independent predictor of left main and/or three-vessel disease in patients with non-ST-segment elevation myocardial infarction. Cardiovasc Revasc Med, 2015, vol. 16, no. 6, pp. 331–335. doi.org/10.1016/j.carrev.2015.05.006.