1. Klimchuk I.P., Yanushko V.A., Kordzahia G.E. Multifocal atherosclerosis: problem of combined atherosclerotic lesions of several arterial territories. Healthcare, 2020, vol. 9, pp. 39-47.
2. Sharrett A.R., Ding J., Criqui M.H., et al. Smoking, diabetes, and blood cholesterol differ in their associations with subclinical atherosclerosis: the Multiethnic Study of Atherosclerosis (MESA). Atherosclerosis, 2006, vol. 186(2), pp. 441-7. DOI: http://dx.doi.org/10.1016/j.atherosclerosis.2005.08.010.
3. Diehm C., Schuster A., Allenberg J.R., et al. High prevalence of peripheral arterial disease and comorbidity in 6880 primary care patients: cross-sectional study. Atherosclerosis, 2004, vol. 172(1), pp. 95-105. DOI: http://dx.doi.org/10.1016/s0021-9150(03)00204-1
4. Rahimi Z. ACE insertion/deletion (I/D) polymorphism and diabetic nephropathy. J Nephropathol, 2012, vol. 1, pp. 143-151. DOI: 10.5812/nephropathol.8109.
5. Tavafi M. Complexity of diabetic nephropathy pathogenesis and design of investigations. J Renal Inj Prev, 2013, vol. 2, pp. 61-65. DOI: 10.12861/jrip.2013.20.
6. Kume N., Cybulsky M.I., Gimbrone M.A. Jr Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest, 1992, vol. 90, pp. 1138-1144. DOI: 10.1172/JCI115932.
7. Corsini A., Bernini F., Quarato P., Donetti E., Bellosta S., Fumagalli R., Paoletti R., Soma V.M. Non-lipid-related effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Cardiology, 1996, vol. 87, pp. 458-468. DOI: 10.1159/000177139.
8. Erl W., Weber P.C., Weber C. Monocytic cell adhesion to endothelial cells stimulated by oxidized low density lipoprotein is mediated by distinct endothelial ligands. Atherosclerosis, 1998, vol. 136, pp. 297-303. DOI: 10.1016/s0021-9150(97)00223-2.
9. Steinbrecher U.P., Parthasarathy S., Leake D.S., Witztum J.L., Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci USA, 1984, vol. 81, p. 3883-3887. DOI: 10.1073/pnas.81.12.3883.
10. Range J.T., LaFontaine P.R., Ryder P.T., Polston M. Factors associated with adherence to statin medications of patients enrolled in a self-insured university health plan. Clin Ther, 2018, vol. 40(10), pp. 1692-1700. DOI: 10.1016/j.clinthera.2018.08.012.
11. Bakhai S., Bhardwaj A., Sandhu P., Reynolds J.L. Optimisation of lipids for prevention of cardiovascular disease in a primary care. BMJ Open Qual, 2018, vol. 7(3), pp. e000071. DOI: 10.1136/bmjoq-2017-000071.
12. Kamal S.M. Effects of single-dose morning and evening administration of pravastatin on antioxidant markers in cholesterol-fed rabbits. J Exp Pharmacol, 2011, vol. 3, pp. 51-58. DOI: 10.2147/JEP.S19449.
13. Taylor F., Huffman M.D., Macedo A.F., Moore T.H.M., Burke M., Smith G.D., Ward K., Ebrahim S. Statins for the primary prevention of cardiovascular disease. Cochrane Data-base Syst Rev, 2013, vol. 1, CD004816. DOI: 10.1002/14651858.CD004816.pub5.
14. Baigent C., Blackwell L., Emberson J., et al. Cholesterol Treatment Trialists’ (CTT) Collaboration. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet, 2010, vol. 376(9753), pp. 1670-1681. DOI: 10.1016/S0140-6736(10)61350-5.
15. Mach F., Baigent C., Catapano, A. L., Koskinas, K. C., et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. European Heart Journal, 2019, vol. 00, pp. 1-78. DOI:10.1093/eurheartj/ehz455.
16. Cannon C.P., Blazing M.A., Giugliano R.P., et al. IMPROVE-IT Investigators. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med, 2015, vol. 372, pp. 2387-2397. DOI: 10.1056/NEJMoa1410489.
17. Gaisenok O.V. Comparative analysis of C-reactive protein and red blood cells distribution width levels in subgroups depending on the severity of hyperlipidemia according to laboratory registry data. Vestnik Avitsenny, 2020, vol. 22, no. 2, pp. 241-245. DOI: 10.25005/2074-0581-2020-22-2-241-245.
18. Ridker P.M., Danielson E., Fonseca F.A., et al. for JUPITER Study Group. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med, 2008, vol. 359, pp. 2195-2207. DOI: 10.1056/NEJMoa0807646.
19. Whelton P.K., Carey R.M., Aronow W.S., et al., 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the american college of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension, 2018, vol. 71(6), pp. 1269-1324. DOI: 10.1161/HYP.0000000000000066.
20. Sabatine M.S., Giugliano R.P., Keech A.C., et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med, 2017, vol. 376, pp. 1713-122. DOI: 10.1056/NEJMoa1615664.
21. Aronov D.M., Arabidze G.G., Akhmedzhanov N.M., et al. Russian recommendations. Revision V. Rus Cardiol J, 2012, vol. 5(97), pp. 1-32. (in Russian).
22. Cheeley M.K., Saseen J.J., Agarwala A., Ravilla S., Ciffone N., Jacobson T.A., Dixon D.L., Maki K.C. NLA scientific statement on statin intolerance: a new definition and key considerations for ASCVD risk reduction in the statin intolerant patient. J Clin Lipidol, 2022, vol. 16(4), pp. 361-375. DOI: 10.1016/j.jacl.2022.05.068.
23. Abifadel M., Varret M., Rabès J-P., et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet, 2003, vol. 34(2), pp. 154-156. DOI: 10.1038/ng1161.
24. Boffa M.B., Koschinsky M.L. Proprotein convertase subtilisin/kexin type 9 inhibitors and lipoprotein(a)-mediated risk of atherosclerotic cardiovascular disease: more than meets the eye? Curr Opin Lipidol, 2019, vol. 30(6), pp. 428-437. DOI: 10.1097/MOL.0000000000000641.
25. Seidah N.G., Awan Z., Chrétien M., Mbikay M. PCSK9: a key modulator of cardiovascular health. Circ Res, 2014, vol. 114, pp. 1022-1036. DOI: 10.1161/CIRCRESAHA.114.301621.
26. Sabatine M., Giugliano R., Keech A., et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med, 2017, vol. 376(18), pp. 1713-2210. DOI: 10.1056/NEJMoa1615664.
27. Sahebkar A., Watts G.F. New therapies targeting apoB metabolism for high-risk patients with inherited dyslipidaemias: what can the clinician expect? Cardiovasc Drugs Ther, 2013, vol. 27(6), pp. 559-567. DOI: 10.1007/s10557-013-6479-4.
28. Ference B.A., Ginsberg H.N., Graham I., et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J, 2017, vol. 38(32), pp. 2459-2472. DOI: 10.1093/eurheartj/ehx144.
29. Ference B.A., Yoo W., Alesh I., et al. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendelian randomization analysis. J Am Coll Cardiol, 2012, vol. 60(25), pp. 2631-2639. DOI: 10.1016/j.jacc.2012.09.017.
30. Crossey E., Amar M.J., Sampson M., et al. A cholesterol-lowering VLP vaccine that targets PCSK9. Vaccine, 2015, vol. 33(43), pp. 5747-5755. DOI: 10.1016/j.vaccine.2015.09.044.
31. Pan Y., Zhou Y., Wu H., Chen X., Hu X., Zhang H., Zhou Z., Qiu Z., Liao Y. A therapeutic peptide vaccine against PCSK9. Sci Rep, 2017, vol. 7(1), pp. 12534. DOI:10.1038/s41598-017-13069-w.
32. Fattori E., Cappelletti M., Surdo P.L., et al. Immunization against proprotein convertase subtilisin-like/kexin type 9 (PCSK9) lowers plasma LDL-cholesterol levels in mice. J Lipid Res. 2012;53(8):1654-61. DOI: 10.1194/jlr.M028340.
33. Zamani P., Momtazi-Borojeni A.A., Nik M.E., et al. Nanoliposomes as the adjuvant delivery systems in cancer immunotherapy. J Cell Physiol. 2018;233(7):5189-99. DOI: 10.1002/jcp.26361.
34. Momtazi-Borojeni A.A., Jaafari M.R., Badiee A., et al. Long-term generation of antiPCSK9 antibody using a nanoliposome-based vaccine delivery system. Atherosclerosis, 2019, vol. 283, pp. 69-78. DOI: 10.1016/j.atherosclerosis.2019.02.001.
35. Rantner B., Kollerits B., Anderwald-Stadler M., et al. Association between the UGT1A1 TA-repeat polymorphism and bilirubin concentration in patients with intermittent claudication: results from the CAVASIC study. Clin. Chem, 2008, vol. 54(5), pp. 851-857. DOI: 10.1373/clinchem.2007.102046.
36. Cheng J.M., Oemrawsingh R.M., Garcia-Garcia H.M., Boersma E., van Geuns R.-J., Serruys P.W., Kardys I., Akkerhuis K.M. PCSK9 in relation to coronary plaque inflammation: results of the ATHEROREMO-IVUS study. Atherosclerosis, 2016, vol. 248, pp. 117-122. DOI: 10.1016/j.atherosclerosis.2016.03.010.
37. Cheng J.M., Garcia-Garcia H.M., De Boer S.P.M., et al. In vivo detection of high-risk coronary plaques by radiofrequency intravascular ultrasound and cardiovascular outcome: results of the ATHEROREMOIVUS study. Eur Heart J, 2014, vol. 35(10), pp. 639-647. DOI: 10.1093/eurheartj/eht484.
38. Wu M.Y., Li C.J., Hou M.F., et al. New insights into the role of inflammation in the pathogenesis of atherosclerosis. Int J Mol Sci, 2017, vol. 18(10), pp. 2034. DOI: 10.3390/ijms18102034.
39. Denis M., Marcinkiewicz J., Zaid A., et al. Gene inactivation of proprotein convertase subtilisin/kexin type 9 reduces atherosclerosis in mice. Circulation, 2012, vol. 125(7), pp. 894-901. DOI: 10.1161/CIRCULATIONAHA.111.057406.
40. Dwivedi D.J., Grin P.M., Khan M., et al. Differential expression of PCSK9 modulates infection, inflammation, and coagulation in a murine model of sepsis. Shock, 2016, vol. 46(6), pp. 672-680. DOI: 10.1097/SHK.0000000000000682.
41. Walley K.R., Thain K.R., Russell J.A., Reilly M.P., Meyer N.J., Ferguson J.F., Christie J.D., Nakada T., Fjell C.D., Thair S.A., Cirstea M.S., Boyd J.H. PCSK9 is a critical regulator of the innate immune response and septic shock outcome. Sci Transl Med, 2014, vol. 6(258), pp. 258ra143. DOI: 10.1126/scitranslmed.3008782.
42. Tang Z.H., Peng J., Ren Z., et al. New role of PCSK9 in atherosclerotic inflammation pro-motion involving the TLR4/NF-κB pathway. Atherosclerosis, 2017, vol. 262, pp. 113-122. DOI: 10.1016/j.atherosclerosis.2017.04.023.
43. Brugts J.J., Yetgin T., Hoeks S.E., et al. The benefits of statins in people without established cardiovascular disease but with cardiovascular risk factors: meta-analysis of randomised controlled trials. BMJ, 2009, vol. 338, pp. b2376. DOI: 10.1136/bmj.b2376.
44. Nair J.K., Willoughby J.L.S., Chan A., et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc, 2014, vol. 136(49), pp. 16958-16961. DOI: 10.1021/ja505986a.
45. German C.A., Shapiro M.D. Small interfering RNA therapeutic inclisiran: a new approach to targeting PCSK9. BioDrugs, 2020, vol. 34(1), pp. 1-9. DOI: 10.1007/s40259-019-00399-6.
46. Stoekenbroek R.M., Kallend D., Wijngaard P.L., et al. Inclisiran for the treatment of cardiovascular disease: the ORION clinical development program. Future Cardiol, 2018, vol. 4(6), pp. 433-442. DOI: 10.2217/fca-2018-0067.
47. Raal F., Kallend D., Ray K., et al. Inclisiran for heterozygous familial hypercholesterolemia. N Engl J Med, 2020, vol. 382(16), pp. 1520-1530. DOI: 10.1056/NEJMoa1913805.
48. Ray K., Wright R., Kallend D., et al. Two phase 3 trials of inclisiran in patients with elevated LDL Cholesterol. N Engl J Med. 2020;382(16):1507-19. DOI: 10.1056/NEJMoa1912387.