References
1. McDonald L. T. Healing after COVID-19: are survivors at risk for pulmonary fibrosis? Am J Physiol Lung Cell Mol Physiol, 2021, vol. 320, no. 2, pp. L257–L265. doi: 10.1152/ajplung.00238.2020.
2. Walls A. C., Park Y. J., Tortorici M. A., Wall A., McGuire A. T., Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, vol. 181, no. 2, pp. 281-292.e6. doi: 10.1016/j.cell.2020.02.058.
3. Chu H., Chan J. F., Wang Y., Yuen T. T., Chai Y., Hou Y., Shuai H., Yang D., Hu B., Huang X., Zhang X., Cai J. P., Zhou J., Yuan S., Kok K. H., To K. K., Chan I. H., Zhang A. J., Sit K. Y., Au W. K., Yuen K. Y. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19. Clin Infect Dis, 2020, vol.71, no. 6, pp. 1400-1409. doi: 10.1093/cid/ciaa410.
4. Lamers M. M., Beumer J., van der Vaart J., Knoops K., Puschhof J., Breugem T. I., Ravelli R. B. G., Paul van Schayck J., Mykytyn A. Z., Duimel H. Q., van Donselaar E., Riesebosch S., Kuijpers H. J. H., Schipper D., van de Wetering W. J., de Graaf M., Koopmans M., Cuppen E., Peters P. J., Haagmans B. L., Clevers H. SARS-CoV-2 productively infects human gut enterocytes. Science, 2020, vol. 369, pp. 50-54. doi:10.1126/science.abc1669.
5. Hamming I., Timens W., Bulthuis M. L., Lely A. T., Navis G., van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol, 2004, vol. 203, no. 2, pp. 631-637. doi:10.1002/path.1570.
6. Naik P. K., Moore B. B. Viral infection and aging as cofactors for the development of pulmonary fibrosis. Expert Rev Respir Med, 2010, vol. 4, pp. 759-771. doi:10.1586/ers.10.73.
7. Qiao J., Zhang M., Bi J., Wang X., Deng G., He G., Luan Z., Lv N., Xu T., Zhao L. Pulmonary fibrosis induced by H5N1 viral infection in mice. Respir Res, 2009, vol. 10, pp. 107. doi:10.1186/1465-9921-10-107.
8. Grasselli G., Zangrillo A., Zanella A., Antonelli M., Cabrini L., Castelli A., Cereda D., Coluccello A., Foti G., Fumagalli R., Iotti G., Latronico N., Lorini L., Merler S., Natalini G., Piatti A., Ranieri M. V., Scandroglio A. M., Storti E., Cecconi M., Pesenti A. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA, 2020, vol. 323, no. 16, pp. 1574-1581. doi:10.1001/jama.2020.5394.
9. Cabrera-Benítez N. E., Parotto M., Post M., Han B., Spieth P. M., Cheng W. E., Valladares F., Villar J., Liu M., Sato M., Zhang H., Slutsky A. S. Mechanical stress induces lung fibrosis by epithelial-mesenchymal transition. Crit Care Med, 2012, vol. 40, pp. 510-517. doi:10.1097/CCM.0b013e31822f09d7.
10. Zhang R., Pan Y., Fanelli V., Wu S., Luo A. A., Islam D., Han B., Mao P., Ghazarian M., Zeng W., Spieth P. M., Wang D., Khang J., Mo H., Liu X., Uhlig S., Liu M., Laffey J., Slutsky A. S., Li Y., Zhang H. Mechanical Stress and the Induction of Lung Fibrosis via the Midkine Signaling Pathway. Am J Respir Crit Care Med, 2015, vol. 192, pp. 315-323. doi:10.1164/rccm.201412-2326OC.
11. Dreyfuss D., Saumon G. Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med, 1998, vol. 157, pp. 294-323. doi:10.1164/ajrccm.157.1.9604014.
12. Spagnolo P., Balestro E., Aliberti S., Cocconcelli E., Biondini D., Casa G. D., Sverzellati N., Maher TM. Pulmonary fibrosis secondary to COVID-19: a call to arms? Lancet Respir Med, 2020, vol. 8, pp. 750-752. doi:10.1016/S2213-2600(20)30222-8.
13. Das K. M., Lee E. Y., Singh R., Enani M. A., Al Dossari K., Van Gorkom K., Larsson S. G., Langer R. D. Follow-up chest radiographic findings in patients with MERS-CoV after recovery. Indian J Radiol Imaging, 2017, vol. 27, no. 3, pp. 342-349. doi:10.4103/ijri.IJRI_469_16.
14. Chan K. S., Zheng J. P., Mok Y. W., Li Y. M., Liu Y. N., Chu C. M., Ip M. S. SARS: prognosis, outcome and sequelae. Respirology, 2003, suppl. 1, pp. S36-40. doi:10.1046/j.1440-1843.2003.00522.x.
15. Hui D. S., Joynt G. M., Wong K. T., Gomersall C. D., Li T. S., Antonio G., Ko F. W., Chan M. C., Chan D. P., Tong M. W., Rainer T. H., Ahuja A. T., Cockram C. S., Sung J. J. Impact of severe acute respiratory syndrome (SARS) on pulmonary function, functional capacity and quality of life in a cohort of survivors. Thorax, 2005, vol. 60, no. 5, pp. 401-409. doi:10.1136/thx.2004.030205.
16. Hui D. S., Wong K. T., Ko F. W., Tam L. S., Chan D. P., Woo J., Sung J. J. The 1-year impact of severe acute respiratory syndrome on pulmonary function, exercise capacity, and quality of life in a cohort of survivors. Chest, 2005, vol. 128, no. 4, pp. 2247-2261. doi:10.1378/chest.128.4.2247.
17. Ngai J. C., Ko F. W., Ng S. S., To K. W., Tong M., Hui D. S. The long-term impact of severe acute respiratory syndrome on pulmonary function, exercise capacity and health status. Respirology, 2010, vol. 15, no. 3, pp. 543-550. doi:10.1111/j.1440-1843.2010.01720.x.
18. Sheahan T., Morrison T. E., Funkhouser W., Uematsu S., Akira S., Baric R. S., Heise M. T. MyD88 is required for protection from lethal infection with a mouse-adapted SARS-CoV. PLoS Pathog, 2008, vol. 4, no. 12, pp. e1000240. doi:10.1371/journal.ppat.1000240.
19. Page C., Goicochea L., Matthews K., Zhang Y., Klover P., Holtzman M. J., Hennighausen L., Frieman M. Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection. J Virol, 2012, vol. 86, no. 24, pp. 13334-13349,. doi:10.1128/JVI.01689-12.
20. Huang K. J., Su I. J., Theron M., Wu Y. C., Lai S. K., Liu C. C., Lei HY. An interferon-gamma-related cytokine storm in SARS patients. J Med Virol, 2005, vol. 75, no. 2, pp. 185-194. doi:10.1002/jmv.20255.
21. Lerum T. V., Aaløkken T. M., Brønstad E., Aarli B., Ikdahl E., Lund K. M. A., Durheim M. T., Rodriguez J. R, Meltzer C., Tonby K., Stavem K., Skjønsberg O. H., Ashraf H., Einvik G. Dyspnoea, lung function and CT findings 3months after hospital admission for COVID-19. Eur Respir J, 2021, vol. 57, no. 4, pp. 2003448. doi: 10.1183/13993003.03448-2020.
22. Т.Н. Трофимова и др. Лучевые методы исследования при COVID-19 и вирусных пневмониях. Первый Санкт-Петербургский государственный медицинский университет им. И.П. Павлова. Лекция. Точка доступа: https://www.1spbgmu. ru/images/home/covid19_24.04.2020.pdf
23. Jia-Ni Zou, Liu Sun, Bin-Ru Wang et al. The characteristics and evolution of pulmonary fibrosis in COVID-19 patients as assessed by AI-assisted chest HRCT. PLoS One. 2021; 16(3): e0248957.
24. Винокуров А. С., Зюзя Ю. Р., Юдин А. Л. Эволюция изменений в легких по данным КТ при динамическом наблюдении пациентов с COVID-19 в ранние сроки. Diagnostic Radiology and Radiotherapy № 2 (11) 2020. C. 76-88.
25. Young-Jae Cho et al. Lung ultrasound for early diagnosis and severity assessment of pneumonia in patients with coronavirus disease 2019. Korean J Intern Med. 2020 Jul;35(4):771-781. doi: 10.3904/kjim.2020.180.
26. Andrea Falcetta, Stefano Leccardi, Elisa Testa, The role of lung ultrasound in the diagnosis of interstitial lung disease. Shanghai Chest, 2018. Vol 2, No 5.
Поступила 15.09.2021